Spaces:
Runtime error
Runtime error
BigData-AI @ KSU
commited on
Commit
·
e3d76d4
1
Parent(s):
653609a
adding clip file since it was modified
Browse files- CLIP/CLIP.png +0 -0
- CLIP/Interacting_with_CLIP.ipynb +0 -0
- CLIP/LICENSE +22 -0
- CLIP/README.md +192 -0
- CLIP/__pycache__/clip.cpython-36.pyc +0 -0
- CLIP/__pycache__/clip.cpython-37.pyc +0 -0
- CLIP/__pycache__/clip.cpython-38.pyc +0 -0
- CLIP/__pycache__/clip.cpython-39.pyc +0 -0
- CLIP/__pycache__/model.cpython-36.pyc +0 -0
- CLIP/__pycache__/model.cpython-37.pyc +0 -0
- CLIP/__pycache__/model.cpython-38.pyc +0 -0
- CLIP/__pycache__/model.cpython-39.pyc +0 -0
- CLIP/__pycache__/simple_tokenizer.cpython-36.pyc +0 -0
- CLIP/__pycache__/simple_tokenizer.cpython-37.pyc +0 -0
- CLIP/__pycache__/simple_tokenizer.cpython-38.pyc +0 -0
- CLIP/__pycache__/simple_tokenizer.cpython-39.pyc +0 -0
- CLIP/bpe_simple_vocab_16e6.txt.gz +3 -0
- CLIP/clip.py +213 -0
- CLIP/clip_old.py +140 -0
- CLIP/model-card.md +118 -0
- CLIP/model.py +461 -0
- CLIP/model_moe.py +498 -0
- CLIP/simple_tokenizer.py +132 -0
CLIP/CLIP.png
ADDED
![]() |
CLIP/Interacting_with_CLIP.ipynb
ADDED
The diff for this file is too large to render.
See raw diff
|
|
CLIP/LICENSE
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 OpenAI
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
22 |
+
|
CLIP/README.md
ADDED
@@ -0,0 +1,192 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# CLIP
|
2 |
+
|
3 |
+
[[Blog]](https://openai.com/blog/clip/) [[Paper]](https://cdn.openai.com/papers/Learning_Transferable_Visual_Models_From_Natural_Language_Supervision.pdf) [[Model Card]](model-card.md) [[Colab]](https://colab.research.google.com/github/openai/clip/blob/master/Interacting_with_CLIP.ipynb)
|
4 |
+
|
5 |
+
CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pairs. It can be instructed in natural language to predict the most relevant text snippet, given an image, without directly optimizing for the task, similarly to the zero-shot capabilities of GPT-2 and 3. We found CLIP matches the performance of the original ResNet50 on ImageNet “zero-shot” without using any of the original 1.28M labeled examples, overcoming several major challenges in computer vision.
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
## Approach
|
10 |
+
|
11 |
+

|
12 |
+
|
13 |
+
|
14 |
+
|
15 |
+
## Usage
|
16 |
+
|
17 |
+
First, [install PyTorch 1.7.1](https://pytorch.org/get-started/locally/) and torchvision, as well as small additional dependencies. On a CUDA GPU machine, the following will do the trick:
|
18 |
+
|
19 |
+
```bash
|
20 |
+
$ conda install --yes -c pytorch pytorch=1.7.1 torchvision cudatoolkit=11.0
|
21 |
+
$ pip install ftfy regex tqdm
|
22 |
+
```
|
23 |
+
|
24 |
+
Replace `cudatoolkit=11.0` above with the appropriate CUDA version on your machine or `cpuonly` when installing on a machine without a GPU.
|
25 |
+
|
26 |
+
```python
|
27 |
+
import torch
|
28 |
+
import clip
|
29 |
+
from PIL import Image
|
30 |
+
|
31 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
32 |
+
model, preprocess = clip.load("ViT-B/32", device=device)
|
33 |
+
|
34 |
+
image = preprocess(Image.open("CLIP.png")).unsqueeze(0).to(device)
|
35 |
+
text = clip.tokenize(["a diagram", "a dog", "a cat"]).to(device)
|
36 |
+
|
37 |
+
with torch.no_grad():
|
38 |
+
image_features = model.encode_image(image)
|
39 |
+
text_features = model.encode_text(text)
|
40 |
+
|
41 |
+
logits_per_image, logits_per_text = model(image, text)
|
42 |
+
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
|
43 |
+
|
44 |
+
print("Label probs:", probs) # prints: [[0.9927937 0.00421068 0.00299572]]
|
45 |
+
```
|
46 |
+
|
47 |
+
|
48 |
+
## API
|
49 |
+
|
50 |
+
The CLIP module `clip` provides the following methods:
|
51 |
+
|
52 |
+
#### `clip.available_models()`
|
53 |
+
|
54 |
+
Returns the name(s) of the available CLIP models.
|
55 |
+
|
56 |
+
#### `clip.load(name, device=..., jit=True)`
|
57 |
+
|
58 |
+
Returns the model and the TorchVision transform needed by the model, specified by the model name returned by `clip.available_models()`. It will download the model as necessary. The device to run the model can be optionally specified, and the default is to use the first CUDA device if there is any, otherwise the CPU.
|
59 |
+
|
60 |
+
When `jit` is `False`, a non-JIT version of the model will be loaded.
|
61 |
+
|
62 |
+
#### `clip.tokenize(text: Union[str, List[str]], context_length=77)`
|
63 |
+
|
64 |
+
Returns a LongTensor containing tokenized sequences of given text input(s). This can be used as the input to the model
|
65 |
+
|
66 |
+
---
|
67 |
+
|
68 |
+
The model returned by `clip.load()` supports the following methods:
|
69 |
+
|
70 |
+
#### `model.encode_image(image: Tensor)`
|
71 |
+
|
72 |
+
Given a batch of images, returns the image features encoded by the vision portion of the CLIP model.
|
73 |
+
|
74 |
+
#### `model.encode_text(text: Tensor)`
|
75 |
+
|
76 |
+
Given a batch of text tokens, returns the text features encoded by the language portion of the CLIP model.
|
77 |
+
|
78 |
+
#### `model(image: Tensor, text: Tensor)`
|
79 |
+
|
80 |
+
Given a batch of images and a batch of text tokens, returns two Tensors, containing the logit scores corresponding to each image and text input. The values are cosine similarities between the corresponding image and text features, times 100.
|
81 |
+
|
82 |
+
|
83 |
+
|
84 |
+
## More Examples
|
85 |
+
|
86 |
+
### Zero-Shot Prediction
|
87 |
+
|
88 |
+
The code below performs zero-shot prediction using CLIP, as shown in Appendix B in the paper. This example takes an image from the [CIFAR-100 dataset](https://www.cs.toronto.edu/~kriz/cifar.html), and predicts the most likely labels among the 100 textual labels from the dataset.
|
89 |
+
|
90 |
+
```python
|
91 |
+
import os
|
92 |
+
import clip
|
93 |
+
import torch
|
94 |
+
from torchvision.datasets import CIFAR100
|
95 |
+
|
96 |
+
# Load the model
|
97 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
98 |
+
model, preprocess = clip.load('ViT-B/32', device)
|
99 |
+
|
100 |
+
# Download the dataset
|
101 |
+
cifar100 = CIFAR100(root=os.path.expanduser("~/.cache"), download=True, train=False)
|
102 |
+
|
103 |
+
# Prepare the inputs
|
104 |
+
image, class_id = cifar100[3637]
|
105 |
+
image_input = preprocess(image).unsqueeze(0).to(device)
|
106 |
+
text_inputs = torch.cat([clip.tokenize(f"a photo of a {c}") for c in cifar100.classes]).to(device)
|
107 |
+
|
108 |
+
# Calculate features
|
109 |
+
with torch.no_grad():
|
110 |
+
image_features = model.encode_image(image_input)
|
111 |
+
text_features = model.encode_text(text_inputs)
|
112 |
+
|
113 |
+
# Pick the top 5 most similar labels for the image
|
114 |
+
image_features /= image_features.norm(dim=-1, keepdim=True)
|
115 |
+
text_features /= text_features.norm(dim=-1, keepdim=True)
|
116 |
+
similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
|
117 |
+
values, indices = similarity[0].topk(5)
|
118 |
+
|
119 |
+
# Print the result
|
120 |
+
print("\nTop predictions:\n")
|
121 |
+
for value, index in zip(values, indices):
|
122 |
+
print(f"{cifar100.classes[index]:>16s}: {100 * value.item():.2f}%")
|
123 |
+
```
|
124 |
+
|
125 |
+
The output will look like the following (the exact numbers may be slightly different depending on the compute device):
|
126 |
+
|
127 |
+
```
|
128 |
+
Top predictions:
|
129 |
+
|
130 |
+
snake: 65.31%
|
131 |
+
turtle: 12.29%
|
132 |
+
sweet_pepper: 3.83%
|
133 |
+
lizard: 1.88%
|
134 |
+
crocodile: 1.75%
|
135 |
+
```
|
136 |
+
|
137 |
+
Note that this example uses the `encode_image()` and `encode_text()` methods that return the encoded features of given inputs.
|
138 |
+
|
139 |
+
|
140 |
+
### Linear-probe evaluation
|
141 |
+
|
142 |
+
The example below uses [scikit-learn](https://scikit-learn.org/) to perform logistic regression on image features.
|
143 |
+
|
144 |
+
```python
|
145 |
+
import os
|
146 |
+
import clip
|
147 |
+
import torch
|
148 |
+
|
149 |
+
import numpy as np
|
150 |
+
from sklearn.linear_model import LogisticRegression
|
151 |
+
from torch.utils.data import DataLoader
|
152 |
+
from torchvision.datasets import CIFAR100
|
153 |
+
from tqdm import tqdm
|
154 |
+
|
155 |
+
# Load the model
|
156 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
157 |
+
model, preprocess = clip.load('ViT-B/32', device)
|
158 |
+
|
159 |
+
# Load the dataset
|
160 |
+
root = os.path.expanduser("~/.cache")
|
161 |
+
train = CIFAR100(root, download=True, train=True, transform=preprocess)
|
162 |
+
test = CIFAR100(root, download=True, train=False, transform=preprocess)
|
163 |
+
|
164 |
+
|
165 |
+
def get_features(dataset):
|
166 |
+
all_features = []
|
167 |
+
all_labels = []
|
168 |
+
|
169 |
+
with torch.no_grad():
|
170 |
+
for images, labels in tqdm(DataLoader(dataset, batch_size=100)):
|
171 |
+
features = model.encode_image(images.to(device))
|
172 |
+
|
173 |
+
all_features.append(features)
|
174 |
+
all_labels.append(labels)
|
175 |
+
|
176 |
+
return torch.cat(all_features).cpu().numpy(), torch.cat(all_labels).cpu().numpy()
|
177 |
+
|
178 |
+
# Calculate the image features
|
179 |
+
train_features, train_labels = get_features(train)
|
180 |
+
test_features, test_labels = get_features(test)
|
181 |
+
|
182 |
+
# Perform logistic regression
|
183 |
+
classifier = LogisticRegression(random_state=0, C=0.316, max_iter=1000, verbose=1)
|
184 |
+
classifier.fit(train_features, train_labels)
|
185 |
+
|
186 |
+
# Evaluate using the logistic regression classifier
|
187 |
+
predictions = classifier.predict(test_features)
|
188 |
+
accuracy = np.mean((test_labels == predictions).astype(np.float)) * 100.
|
189 |
+
print(f"Accuracy = {accuracy:.3f}")
|
190 |
+
```
|
191 |
+
|
192 |
+
Note that the `C` value should be determined via a hyperparameter sweep using a validation split.
|
CLIP/__pycache__/clip.cpython-36.pyc
ADDED
Binary file (5.26 kB). View file
|
|
CLIP/__pycache__/clip.cpython-37.pyc
ADDED
Binary file (7.75 kB). View file
|
|
CLIP/__pycache__/clip.cpython-38.pyc
ADDED
Binary file (7.76 kB). View file
|
|
CLIP/__pycache__/clip.cpython-39.pyc
ADDED
Binary file (7.83 kB). View file
|
|
CLIP/__pycache__/model.cpython-36.pyc
ADDED
Binary file (14 kB). View file
|
|
CLIP/__pycache__/model.cpython-37.pyc
ADDED
Binary file (15.9 kB). View file
|
|
CLIP/__pycache__/model.cpython-38.pyc
ADDED
Binary file (15.6 kB). View file
|
|
CLIP/__pycache__/model.cpython-39.pyc
ADDED
Binary file (15.5 kB). View file
|
|
CLIP/__pycache__/simple_tokenizer.cpython-36.pyc
ADDED
Binary file (5.79 kB). View file
|
|
CLIP/__pycache__/simple_tokenizer.cpython-37.pyc
ADDED
Binary file (5.74 kB). View file
|
|
CLIP/__pycache__/simple_tokenizer.cpython-38.pyc
ADDED
Binary file (5.77 kB). View file
|
|
CLIP/__pycache__/simple_tokenizer.cpython-39.pyc
ADDED
Binary file (5.73 kB). View file
|
|
CLIP/bpe_simple_vocab_16e6.txt.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:924691ac288e54409236115652ad4aa250f48203de50a9e4722a6ecd48d6804a
|
3 |
+
size 1356917
|
CLIP/clip.py
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from typing import Union, List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from .model import build_model
|
13 |
+
from .simple_tokenizer import SimpleTokenizer as _Tokenizer
|
14 |
+
|
15 |
+
try:
|
16 |
+
from torchvision.transforms import InterpolationMode
|
17 |
+
BICUBIC = InterpolationMode.BICUBIC
|
18 |
+
except ImportError:
|
19 |
+
BICUBIC = Image.BICUBIC
|
20 |
+
|
21 |
+
|
22 |
+
if torch.__version__.split(".") < ["1", "7", "1"]:
|
23 |
+
warnings.warn("PyTorch version 1.7.1 or higher is recommended")
|
24 |
+
|
25 |
+
|
26 |
+
__all__ = ["available_models", "load", "tokenize"]
|
27 |
+
_tokenizer = _Tokenizer()
|
28 |
+
|
29 |
+
_MODELS = {
|
30 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
31 |
+
"RN101": "https://openaipublic.azureedge.net/clip/models/8fa8567bab74a42d41c5915025a8e4538c3bdbe8804a470a72f30b0d94fab599/RN101.pt",
|
32 |
+
"RN50x4": "https://openaipublic.azureedge.net/clip/models/7e526bd135e493cef0776de27d5f42653e6b4c8bf9e0f653bb11773263205fdd/RN50x4.pt",
|
33 |
+
"RN50x16": "https://openaipublic.azureedge.net/clip/models/52378b407f34354e150460fe41077663dd5b39c54cd0bfd2b27167a4a06ec9aa/RN50x16.pt",
|
34 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
35 |
+
"ViT-B/16": "https://openaipublic.azureedge.net/clip/models/5806e77cd80f8b59890b7e101eabd078d9fb84e6937f9e85e4ecb61988df416f/ViT-B-16.pt",
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
|
40 |
+
os.makedirs(root, exist_ok=True)
|
41 |
+
filename = os.path.basename(url)
|
42 |
+
|
43 |
+
expected_sha256 = url.split("/")[-2]
|
44 |
+
download_target = os.path.join(root, filename)
|
45 |
+
|
46 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
47 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
48 |
+
|
49 |
+
if os.path.isfile(download_target):
|
50 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
51 |
+
return download_target
|
52 |
+
else:
|
53 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
54 |
+
|
55 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
56 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop:
|
57 |
+
while True:
|
58 |
+
buffer = source.read(8192)
|
59 |
+
if not buffer:
|
60 |
+
break
|
61 |
+
|
62 |
+
output.write(buffer)
|
63 |
+
loop.update(len(buffer))
|
64 |
+
|
65 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
66 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
67 |
+
|
68 |
+
return download_target
|
69 |
+
|
70 |
+
|
71 |
+
def _transform(n_px):
|
72 |
+
return Compose([
|
73 |
+
Resize(n_px, interpolation=BICUBIC),
|
74 |
+
CenterCrop(n_px),
|
75 |
+
lambda image: image.convert("RGB"),
|
76 |
+
ToTensor(),
|
77 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
78 |
+
])
|
79 |
+
|
80 |
+
|
81 |
+
def available_models() -> List[str]:
|
82 |
+
"""Returns the names of available CLIP models"""
|
83 |
+
return list(_MODELS.keys())
|
84 |
+
|
85 |
+
|
86 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=False):
|
87 |
+
"""Load a CLIP model
|
88 |
+
Parameters
|
89 |
+
----------
|
90 |
+
name : str
|
91 |
+
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict
|
92 |
+
device : Union[str, torch.device]
|
93 |
+
The device to put the loaded model
|
94 |
+
jit : bool
|
95 |
+
Whether to load the optimized JIT model or more hackable non-JIT model (default).
|
96 |
+
Returns
|
97 |
+
-------
|
98 |
+
model : torch.nn.Module
|
99 |
+
The CLIP model
|
100 |
+
preprocess : Callable[[PIL.Image], torch.Tensor]
|
101 |
+
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input
|
102 |
+
"""
|
103 |
+
if name in _MODELS:
|
104 |
+
model_path = _download(_MODELS[name])
|
105 |
+
elif os.path.isfile(name):
|
106 |
+
model_path = name
|
107 |
+
else:
|
108 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
109 |
+
|
110 |
+
try:
|
111 |
+
# loading JIT archive
|
112 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
113 |
+
state_dict = None
|
114 |
+
except RuntimeError:
|
115 |
+
# loading saved state dict
|
116 |
+
if jit:
|
117 |
+
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead")
|
118 |
+
jit = False
|
119 |
+
state_dict = torch.load(model_path, map_location="cpu")
|
120 |
+
|
121 |
+
if not jit:
|
122 |
+
print("Heree.....")
|
123 |
+
model = build_model(state_dict or model.state_dict()).to(device)
|
124 |
+
if str(device) == "cpu":
|
125 |
+
model.float()
|
126 |
+
return model, _transform(model.visual.input_resolution)
|
127 |
+
|
128 |
+
# patch the device names
|
129 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
130 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
131 |
+
|
132 |
+
def patch_device(module):
|
133 |
+
try:
|
134 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
135 |
+
except RuntimeError:
|
136 |
+
graphs = []
|
137 |
+
|
138 |
+
if hasattr(module, "forward1"):
|
139 |
+
graphs.append(module.forward1.graph)
|
140 |
+
|
141 |
+
for graph in graphs:
|
142 |
+
for node in graph.findAllNodes("prim::Constant"):
|
143 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
144 |
+
node.copyAttributes(device_node)
|
145 |
+
|
146 |
+
model.apply(patch_device)
|
147 |
+
patch_device(model.encode_image)
|
148 |
+
patch_device(model.encode_text)
|
149 |
+
|
150 |
+
# patch dtype to float32 on CPU
|
151 |
+
if str(device) == "cpu":
|
152 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
153 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
154 |
+
float_node = float_input.node()
|
155 |
+
|
156 |
+
def patch_float(module):
|
157 |
+
try:
|
158 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
159 |
+
except RuntimeError:
|
160 |
+
graphs = []
|
161 |
+
|
162 |
+
if hasattr(module, "forward1"):
|
163 |
+
graphs.append(module.forward1.graph)
|
164 |
+
|
165 |
+
for graph in graphs:
|
166 |
+
for node in graph.findAllNodes("aten::to"):
|
167 |
+
inputs = list(node.inputs())
|
168 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
169 |
+
if inputs[i].node()["value"] == 5:
|
170 |
+
inputs[i].node().copyAttributes(float_node)
|
171 |
+
|
172 |
+
model.apply(patch_float)
|
173 |
+
patch_float(model.encode_image)
|
174 |
+
patch_float(model.encode_text)
|
175 |
+
|
176 |
+
model.float()
|
177 |
+
|
178 |
+
return model, _transform(model.input_resolution.item())
|
179 |
+
|
180 |
+
|
181 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77, truncate: bool = False) -> torch.LongTensor:
|
182 |
+
"""
|
183 |
+
Returns the tokenized representation of given input string(s)
|
184 |
+
Parameters
|
185 |
+
----------
|
186 |
+
texts : Union[str, List[str]]
|
187 |
+
An input string or a list of input strings to tokenize
|
188 |
+
context_length : int
|
189 |
+
The context length to use; all CLIP models use 77 as the context length
|
190 |
+
truncate: bool
|
191 |
+
Whether to truncate the text in case its encoding is longer than the context length
|
192 |
+
Returns
|
193 |
+
-------
|
194 |
+
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
|
195 |
+
"""
|
196 |
+
if isinstance(texts, str):
|
197 |
+
texts = [texts]
|
198 |
+
|
199 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
200 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
201 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
202 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
203 |
+
|
204 |
+
for i, tokens in enumerate(all_tokens):
|
205 |
+
if len(tokens) > context_length:
|
206 |
+
if truncate:
|
207 |
+
tokens = tokens[:context_length]
|
208 |
+
tokens[-1] = eot_token
|
209 |
+
else:
|
210 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
211 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
212 |
+
|
213 |
+
return result
|
CLIP/clip_old.py
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import hashlib
|
2 |
+
import os
|
3 |
+
import urllib
|
4 |
+
import warnings
|
5 |
+
from typing import Union, List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from PIL import Image
|
9 |
+
from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
from CLIP.model import build_model
|
13 |
+
from CLIP.simple_tokenizer import SimpleTokenizer as _Tokenizer
|
14 |
+
|
15 |
+
__all__ = ["available_models", "load", "tokenize"]
|
16 |
+
_tokenizer = _Tokenizer()
|
17 |
+
|
18 |
+
_MODELS = {
|
19 |
+
"RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt",
|
20 |
+
"ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt",
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
def _download(url: str, root: str = os.path.expanduser("~/.cache/clip")):
|
25 |
+
os.makedirs(root, exist_ok=True)
|
26 |
+
filename = os.path.basename(url)
|
27 |
+
|
28 |
+
expected_sha256 = url.split("/")[-2]
|
29 |
+
download_target = os.path.join(root, filename)
|
30 |
+
|
31 |
+
if os.path.exists(download_target) and not os.path.isfile(download_target):
|
32 |
+
raise RuntimeError(f"{download_target} exists and is not a regular file")
|
33 |
+
|
34 |
+
if os.path.isfile(download_target):
|
35 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256:
|
36 |
+
return download_target
|
37 |
+
else:
|
38 |
+
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file")
|
39 |
+
|
40 |
+
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output:
|
41 |
+
with tqdm(total=int(source.info().get("Content-Length")), ncols=80) as loop:
|
42 |
+
while True:
|
43 |
+
buffer = source.read(8192)
|
44 |
+
if not buffer:
|
45 |
+
break
|
46 |
+
|
47 |
+
output.write(buffer)
|
48 |
+
loop.update(len(buffer))
|
49 |
+
|
50 |
+
if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256:
|
51 |
+
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match")
|
52 |
+
|
53 |
+
return download_target
|
54 |
+
|
55 |
+
|
56 |
+
def available_models():
|
57 |
+
return list(_MODELS.keys())
|
58 |
+
|
59 |
+
|
60 |
+
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=True):
|
61 |
+
if name not in _MODELS:
|
62 |
+
raise RuntimeError(f"Model {name} not found; available models = {available_models()}")
|
63 |
+
|
64 |
+
model_path = _download(_MODELS[name])
|
65 |
+
model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval()
|
66 |
+
n_px = model.input_resolution.item()
|
67 |
+
|
68 |
+
transform = Compose([
|
69 |
+
Resize(n_px, interpolation=Image.BICUBIC),
|
70 |
+
CenterCrop(n_px),
|
71 |
+
lambda image: image.convert("RGB"),
|
72 |
+
ToTensor(),
|
73 |
+
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
|
74 |
+
])
|
75 |
+
|
76 |
+
if not jit:
|
77 |
+
print("get Model.....")
|
78 |
+
model = build_model(model.state_dict()).to(device)
|
79 |
+
return model, transform
|
80 |
+
|
81 |
+
# patch the device names
|
82 |
+
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[])
|
83 |
+
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1]
|
84 |
+
|
85 |
+
def patch_device(module):
|
86 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
87 |
+
if hasattr(module, "forward1"):
|
88 |
+
graphs.append(module.forward1.graph)
|
89 |
+
|
90 |
+
for graph in graphs:
|
91 |
+
for node in graph.findAllNodes("prim::Constant"):
|
92 |
+
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"):
|
93 |
+
node.copyAttributes(device_node)
|
94 |
+
|
95 |
+
model.apply(patch_device)
|
96 |
+
patch_device(model.encode_image)
|
97 |
+
patch_device(model.encode_text)
|
98 |
+
|
99 |
+
# patch dtype to float32 on CPU
|
100 |
+
if device == "cpu":
|
101 |
+
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[])
|
102 |
+
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1]
|
103 |
+
float_node = float_input.node()
|
104 |
+
|
105 |
+
def patch_float(module):
|
106 |
+
graphs = [module.graph] if hasattr(module, "graph") else []
|
107 |
+
if hasattr(module, "forward1"):
|
108 |
+
graphs.append(module.forward1.graph)
|
109 |
+
|
110 |
+
for graph in graphs:
|
111 |
+
for node in graph.findAllNodes("aten::to"):
|
112 |
+
inputs = list(node.inputs())
|
113 |
+
for i in [1, 2]: # dtype can be the second or third argument to aten::to()
|
114 |
+
if inputs[i].node()["value"] == 5:
|
115 |
+
inputs[i].node().copyAttributes(float_node)
|
116 |
+
|
117 |
+
model.apply(patch_float)
|
118 |
+
patch_float(model.encode_image)
|
119 |
+
patch_float(model.encode_text)
|
120 |
+
|
121 |
+
model.float()
|
122 |
+
|
123 |
+
return model, transform
|
124 |
+
|
125 |
+
|
126 |
+
def tokenize(texts: Union[str, List[str]], context_length: int = 77):
|
127 |
+
if isinstance(texts, str):
|
128 |
+
texts = [texts]
|
129 |
+
|
130 |
+
sot_token = _tokenizer.encoder["<|startoftext|>"]
|
131 |
+
eot_token = _tokenizer.encoder["<|endoftext|>"]
|
132 |
+
all_tokens = [[sot_token] + _tokenizer.encode(text) + [eot_token] for text in texts]
|
133 |
+
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long)
|
134 |
+
|
135 |
+
for i, tokens in enumerate(all_tokens):
|
136 |
+
if len(tokens) > context_length:
|
137 |
+
raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}")
|
138 |
+
result[i, :len(tokens)] = torch.tensor(tokens)
|
139 |
+
|
140 |
+
return result
|
CLIP/model-card.md
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Model Card: CLIP
|
2 |
+
|
3 |
+
Inspired by [Model Cards for Model Reporting (Mitchell et al.)](https://arxiv.org/abs/1810.03993) and [Lessons from Archives (Jo & Gebru)](https://arxiv.org/pdf/1912.10389.pdf), we’re providing some accompanying information about the multimodal model.
|
4 |
+
|
5 |
+
## Model Details
|
6 |
+
|
7 |
+
The CLIP model was developed by researchers at OpenAI to learn about what contributes to robustness in computer vision tasks. The model was also developed to test the ability of models to generalize to arbitrary image classification tasks in a zero-shot manner. It was not developed for general model deployment - to deploy models like CLIP, researchers will first need to carefully study their capabilities in relation to the specific context they’re being deployed within.
|
8 |
+
|
9 |
+
### Model Date
|
10 |
+
|
11 |
+
January 2021
|
12 |
+
|
13 |
+
### Model Type
|
14 |
+
|
15 |
+
The base model uses a ResNet50 with several modifications as an image encoder and uses a masked self-attention Transformer as a text encoder. These encoders are trained to maximize the similarity of (image, text) pairs via a contrastive loss. There is also a variant of the model where the ResNet image encoder is replaced with a Vision Transformer.
|
16 |
+
|
17 |
+
### Model Version
|
18 |
+
|
19 |
+
Initially we’ve released one CLIP model based on the Vision Transformer architecture equivalent to ViT-B/32
|
20 |
+
|
21 |
+
Please see the paper linked below for further details about their specification.
|
22 |
+
|
23 |
+
### Documents
|
24 |
+
|
25 |
+
- [Blog Post](https://openai.com/blog/clip/)
|
26 |
+
- [CLIP Paper](https://cdn.openai.com/papers/Learning_Transferable_Visual_Models_From_Natural_Language_Supervision.pdf)
|
27 |
+
|
28 |
+
|
29 |
+
|
30 |
+
## Model Use
|
31 |
+
|
32 |
+
### Intended Use
|
33 |
+
|
34 |
+
The model is intended as a research output for research communities. We hope that this model will enable researchers to better understand and explore zero-shot, arbitrary image classification. We also hope it can be used for interdisciplinary studies of the potential impact of such models - the CLIP paper includes a discussion of potential downstream impacts to provide an example for this sort of analysis.
|
35 |
+
|
36 |
+
#### Primary intended uses
|
37 |
+
|
38 |
+
The primary intended users of these models are AI researchers.
|
39 |
+
|
40 |
+
We primarily imagine the model will be used by researchers to better understand robustness, generalization, and other capabilities, biases, and constraints of computer vision models.
|
41 |
+
|
42 |
+
### Out-of-Scope Use Cases
|
43 |
+
|
44 |
+
**Any** deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP’s performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.
|
45 |
+
|
46 |
+
Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.
|
47 |
+
|
48 |
+
Since the model has not been purposefully trained in or evaluated on any languages other than English, its use should be limited to English language use cases.
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
## Data
|
53 |
+
|
54 |
+
The model was trained on publicly available image-caption data. This was done through a combination of crawling a handful of websites and using commonly-used pre-existing image datasets such as [YFCC100M](http://projects.dfki.uni-kl.de/yfcc100m/). A large portion of the data comes from our crawling of the internet. This means that the data is more representative of people and societies most connected to the internet which tend to skew towards more developed nations, and younger, male users.
|
55 |
+
|
56 |
+
### Data Mission Statement
|
57 |
+
|
58 |
+
Our goal with building this dataset was to test out robustness and generalizability in computer vision tasks. As a result, the focus was on gathering large quantities of data from different publicly-available internet data sources. The data was gathered in a mostly non-interventionist manner. However, we only crawled websites that had policies against excessively violent and adult images and allowed us to filter out such content. We do not intend for this dataset to be used as the basis for any commercial or deployed model and will not be releasing the dataset.
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
## Performance and Limitations
|
63 |
+
|
64 |
+
### Performance
|
65 |
+
|
66 |
+
We have evaluated the performance of CLIP on a wide range of benchmarks across a variety of computer vision datasets such as OCR to texture recognition to fine-grained classification. The paper describes model performance on the following datasets:
|
67 |
+
|
68 |
+
- Food101
|
69 |
+
- CIFAR10
|
70 |
+
- CIFAR100
|
71 |
+
- Birdsnap
|
72 |
+
- SUN397
|
73 |
+
- Stanford Cars
|
74 |
+
- FGVC Aircraft
|
75 |
+
- VOC2007
|
76 |
+
- DTD
|
77 |
+
- Oxford-IIIT Pet dataset
|
78 |
+
- Caltech101
|
79 |
+
- Flowers102
|
80 |
+
- MNIST
|
81 |
+
- SVHN
|
82 |
+
- IIIT5K
|
83 |
+
- Hateful Memes
|
84 |
+
- SST-2
|
85 |
+
- UCF101
|
86 |
+
- Kinetics700
|
87 |
+
- Country211
|
88 |
+
- CLEVR Counting
|
89 |
+
- KITTI Distance
|
90 |
+
- STL-10
|
91 |
+
- RareAct
|
92 |
+
- Flickr30
|
93 |
+
- MSCOCO
|
94 |
+
- ImageNet
|
95 |
+
- ImageNet-A
|
96 |
+
- ImageNet-R
|
97 |
+
- ImageNet Sketch
|
98 |
+
- ObjectNet (ImageNet Overlap)
|
99 |
+
- Youtube-BB
|
100 |
+
- ImageNet-Vid
|
101 |
+
|
102 |
+
## Limitations
|
103 |
+
|
104 |
+
CLIP and our analysis of it have a number of limitations. CLIP currently struggles with respect to certain tasks such as fine grained classification and counting objects. CLIP also poses issues with regards to fairness and bias which we discuss in the paper and briefly in the next section. Additionally, our approach to testing CLIP also has an important limitation- in many cases we have used linear probes to evaluate the performance of CLIP and there is evidence suggesting that linear probes can underestimate model performance.
|
105 |
+
|
106 |
+
### Bias and Fairness
|
107 |
+
|
108 |
+
We find that the performance of CLIP - and the specific biases it exhibits - can depend significantly on class design and the choices one makes for categories to include and exclude. We tested the risk of certain kinds of denigration with CLIP by classifying images of people from [Fairface](https://arxiv.org/abs/1908.04913) into crime-related and non-human animal categories. We found significant disparities with respect to race and gender. Additionally, we found that these disparities could shift based on how the classes were constructed. (Details captured in the Broader Impacts Section in the paper).
|
109 |
+
|
110 |
+
We also tested the performance of CLIP on gender, race and age classification using the Fairface dataset (We default to using race categories as they are constructed in the Fairface dataset.) in order to assess quality of performance across different demographics. We found accuracy >96% across all races for gender classification with ‘Middle Eastern’ having the highest accuracy (98.4%) and ‘White’ having the lowest (96.5%). Additionally, CLIP averaged ~93% for racial classification and ~63% for age classification. Our use of evaluations to test for gender, race and age classification as well as denigration harms is simply to evaluate performance of the model across people and surface potential risks and not to demonstrate an endorsement/enthusiasm for such tasks.
|
111 |
+
|
112 |
+
|
113 |
+
|
114 |
+
## Feedback
|
115 |
+
|
116 |
+
### Where to send questions or comments about the model
|
117 |
+
|
118 |
+
Please use [this Google Form](https://forms.gle/Uv7afRH5dvY34ZEs9)
|
CLIP/model.py
ADDED
@@ -0,0 +1,461 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
|
9 |
+
class Bottleneck(nn.Module):
|
10 |
+
expansion = 4
|
11 |
+
|
12 |
+
def __init__(self, inplanes, planes, stride=1):
|
13 |
+
super().__init__()
|
14 |
+
|
15 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
16 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
17 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
18 |
+
|
19 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
20 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
21 |
+
|
22 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
23 |
+
|
24 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
25 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
26 |
+
|
27 |
+
self.relu = nn.ReLU(inplace=True)
|
28 |
+
self.downsample = None
|
29 |
+
self.stride = stride
|
30 |
+
|
31 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
32 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
33 |
+
self.downsample = nn.Sequential(OrderedDict([
|
34 |
+
("-1", nn.AvgPool2d(stride)),
|
35 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
36 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
37 |
+
]))
|
38 |
+
|
39 |
+
def forward(self, x: torch.Tensor):
|
40 |
+
identity = x
|
41 |
+
|
42 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
43 |
+
out = self.relu(self.bn2(self.conv2(out)))
|
44 |
+
out = self.avgpool(out)
|
45 |
+
out = self.bn3(self.conv3(out))
|
46 |
+
|
47 |
+
if self.downsample is not None:
|
48 |
+
identity = self.downsample(x)
|
49 |
+
|
50 |
+
out += identity
|
51 |
+
out = self.relu(out)
|
52 |
+
return out
|
53 |
+
|
54 |
+
|
55 |
+
class AttentionPool2d(nn.Module):
|
56 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
57 |
+
super().__init__()
|
58 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
59 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
60 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
61 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
62 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
63 |
+
self.num_heads = num_heads
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
67 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
68 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
69 |
+
x, _ = F.multi_head_attention_forward(
|
70 |
+
query=x, key=x, value=x,
|
71 |
+
embed_dim_to_check=x.shape[-1],
|
72 |
+
num_heads=self.num_heads,
|
73 |
+
q_proj_weight=self.q_proj.weight,
|
74 |
+
k_proj_weight=self.k_proj.weight,
|
75 |
+
v_proj_weight=self.v_proj.weight,
|
76 |
+
in_proj_weight=None,
|
77 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
78 |
+
bias_k=None,
|
79 |
+
bias_v=None,
|
80 |
+
add_zero_attn=False,
|
81 |
+
dropout_p=0,
|
82 |
+
out_proj_weight=self.c_proj.weight,
|
83 |
+
out_proj_bias=self.c_proj.bias,
|
84 |
+
use_separate_proj_weight=True,
|
85 |
+
training=self.training,
|
86 |
+
need_weights=False
|
87 |
+
)
|
88 |
+
|
89 |
+
return x[0]
|
90 |
+
|
91 |
+
|
92 |
+
class ModifiedResNet(nn.Module):
|
93 |
+
"""
|
94 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
95 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
96 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
97 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
98 |
+
"""
|
99 |
+
|
100 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
101 |
+
super().__init__()
|
102 |
+
self.output_dim = output_dim
|
103 |
+
self.input_resolution = input_resolution
|
104 |
+
|
105 |
+
# the 3-layer stem
|
106 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
107 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
108 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
109 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
110 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
111 |
+
self.bn3 = nn.BatchNorm2d(width)
|
112 |
+
self.avgpool = nn.AvgPool2d(2)
|
113 |
+
self.relu = nn.ReLU(inplace=True)
|
114 |
+
|
115 |
+
# residual layers
|
116 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
117 |
+
self.layer1 = self._make_layer(width, layers[0])
|
118 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
119 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
120 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
121 |
+
|
122 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
123 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
124 |
+
|
125 |
+
def _make_layer(self, planes, blocks, stride=1):
|
126 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
127 |
+
|
128 |
+
self._inplanes = planes * Bottleneck.expansion
|
129 |
+
for _ in range(1, blocks):
|
130 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
131 |
+
|
132 |
+
return nn.Sequential(*layers)
|
133 |
+
|
134 |
+
def forward(self, x):
|
135 |
+
def stem(x):
|
136 |
+
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
|
137 |
+
x = self.relu(bn(conv(x)))
|
138 |
+
x = self.avgpool(x)
|
139 |
+
return x
|
140 |
+
|
141 |
+
x = x.type(self.conv1.weight.dtype)
|
142 |
+
x = stem(x)
|
143 |
+
x = self.layer1(x)
|
144 |
+
x = self.layer2(x)
|
145 |
+
x = self.layer3(x)
|
146 |
+
|
147 |
+
|
148 |
+
#x = self.layer4(x)
|
149 |
+
#print(x.shape)
|
150 |
+
#x = self.attnpool(x)
|
151 |
+
|
152 |
+
return x
|
153 |
+
|
154 |
+
|
155 |
+
class LayerNorm(nn.LayerNorm):
|
156 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
157 |
+
|
158 |
+
def forward(self, x: torch.Tensor):
|
159 |
+
orig_type = x.dtype
|
160 |
+
ret = super().forward(x.type(torch.float32))
|
161 |
+
return ret.type(orig_type)
|
162 |
+
|
163 |
+
|
164 |
+
class QuickGELU(nn.Module):
|
165 |
+
def forward(self, x: torch.Tensor):
|
166 |
+
return x * torch.sigmoid(1.702 * x)
|
167 |
+
|
168 |
+
|
169 |
+
class ResidualAttentionBlock(nn.Module):
|
170 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
171 |
+
super().__init__()
|
172 |
+
|
173 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
174 |
+
self.ln_1 = LayerNorm(d_model)
|
175 |
+
self.mlp = nn.Sequential(OrderedDict([
|
176 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
177 |
+
("gelu", QuickGELU()),
|
178 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
179 |
+
]))
|
180 |
+
self.ln_2 = LayerNorm(d_model)
|
181 |
+
self.attn_mask = attn_mask
|
182 |
+
|
183 |
+
def attention(self, x: torch.Tensor):
|
184 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
185 |
+
return self.attn(x, x, x, need_weights=True, attn_mask=self.attn_mask)
|
186 |
+
|
187 |
+
def forward(self, x: torch.Tensor):
|
188 |
+
attention_res = self.attention(self.ln_1(x))
|
189 |
+
x, weight = x+attention_res[0], attention_res[1]
|
190 |
+
x = x + self.mlp(self.ln_2(x))
|
191 |
+
return x, weight
|
192 |
+
|
193 |
+
class ResidualAttentionBlock_old(nn.Module):
|
194 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
195 |
+
super().__init__()
|
196 |
+
|
197 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
198 |
+
self.ln_1 = LayerNorm(d_model)
|
199 |
+
self.mlp = nn.Sequential(OrderedDict([
|
200 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
201 |
+
("gelu", QuickGELU()),
|
202 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
203 |
+
]))
|
204 |
+
self.ln_2 = LayerNorm(d_model)
|
205 |
+
self.attn_mask = attn_mask
|
206 |
+
|
207 |
+
def attention(self, x: torch.Tensor):
|
208 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
209 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
210 |
+
|
211 |
+
def forward(self, x: torch.Tensor):
|
212 |
+
x = x + self.attention(self.ln_1(x))
|
213 |
+
x = x + self.mlp(self.ln_2(x))
|
214 |
+
return x
|
215 |
+
|
216 |
+
|
217 |
+
class Transformer(nn.Module):
|
218 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
219 |
+
super().__init__()
|
220 |
+
self.width = width
|
221 |
+
self.layers = layers
|
222 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
223 |
+
|
224 |
+
def forward(self, x: torch.Tensor):
|
225 |
+
weights = []
|
226 |
+
r=0
|
227 |
+
|
228 |
+
for block in self.resblocks:
|
229 |
+
#if r<=10:
|
230 |
+
# for param in block.parameters():
|
231 |
+
# param.requires_grad = False
|
232 |
+
#if r%2==0:
|
233 |
+
|
234 |
+
x, weight = block(x)
|
235 |
+
weights.append(weight)
|
236 |
+
#print("r=",r)
|
237 |
+
#if r==5:
|
238 |
+
# break
|
239 |
+
#r = r + 1
|
240 |
+
|
241 |
+
return x, weights
|
242 |
+
|
243 |
+
### OLD transformer without attetion
|
244 |
+
class Transformer_Ecnoder_clip(nn.Module):
|
245 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
246 |
+
super().__init__()
|
247 |
+
self.width = width
|
248 |
+
self.layers = layers
|
249 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
250 |
+
|
251 |
+
def forward(self, x: torch.Tensor):
|
252 |
+
return self.resblocks(x)
|
253 |
+
|
254 |
+
|
255 |
+
class VisualTransformer(nn.Module):
|
256 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
257 |
+
super().__init__()
|
258 |
+
self.input_resolution = input_resolution
|
259 |
+
self.output_dim = output_dim
|
260 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
261 |
+
|
262 |
+
scale = width ** -0.5
|
263 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
264 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
265 |
+
self.ln_pre = LayerNorm(width)
|
266 |
+
|
267 |
+
self.transformer = Transformer(width, layers, heads)
|
268 |
+
|
269 |
+
self.ln_post = LayerNorm(width)
|
270 |
+
self.proj = nn.Parameter(scale * torch.randn(width, 512))
|
271 |
+
|
272 |
+
def forward(self, x: torch.Tensor):
|
273 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
274 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
275 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
276 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
277 |
+
|
278 |
+
|
279 |
+
x = x + self.positional_embedding.to(x.dtype)
|
280 |
+
x = self.ln_pre(x)
|
281 |
+
|
282 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
283 |
+
x,weight = self.transformer(x)
|
284 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
285 |
+
#hide_feat=x
|
286 |
+
#x = self.ln_post(x[:, 0, :])
|
287 |
+
#x=self.ln_post(x)
|
288 |
+
if self.proj is not None:
|
289 |
+
hide_feat=self.ln_post(x) @ self.proj
|
290 |
+
x = self.ln_post(x[:, 0, :]) @ self.proj
|
291 |
+
#print(hide_feat.shape)
|
292 |
+
|
293 |
+
return x,weight,hide_feat
|
294 |
+
|
295 |
+
|
296 |
+
class CLIP(nn.Module):
|
297 |
+
def __init__(self,
|
298 |
+
embed_dim: int,
|
299 |
+
# vision
|
300 |
+
image_resolution: int,
|
301 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
302 |
+
vision_width: int,
|
303 |
+
vision_patch_size: int,
|
304 |
+
# text
|
305 |
+
context_length: int,
|
306 |
+
vocab_size: int,
|
307 |
+
transformer_width: int,
|
308 |
+
transformer_heads: int,
|
309 |
+
transformer_layers: int
|
310 |
+
):
|
311 |
+
super().__init__()
|
312 |
+
|
313 |
+
self.context_length = context_length
|
314 |
+
|
315 |
+
if isinstance(vision_layers, (tuple, list)):
|
316 |
+
vision_heads = vision_width * 32 // 64
|
317 |
+
self.visual = ModifiedResNet(
|
318 |
+
layers=vision_layers,
|
319 |
+
output_dim=embed_dim,
|
320 |
+
heads=vision_heads,
|
321 |
+
input_resolution=image_resolution,
|
322 |
+
width=vision_width
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
vision_heads = vision_width // 64
|
326 |
+
self.visual = VisualTransformer(
|
327 |
+
input_resolution=image_resolution,
|
328 |
+
patch_size=vision_patch_size,
|
329 |
+
width=vision_width,
|
330 |
+
layers=vision_layers,
|
331 |
+
heads=vision_heads,
|
332 |
+
output_dim=embed_dim
|
333 |
+
)
|
334 |
+
|
335 |
+
self.transformer = Transformer(
|
336 |
+
width=transformer_width,
|
337 |
+
layers=transformer_layers,
|
338 |
+
heads=transformer_heads,
|
339 |
+
attn_mask=self.build_attention_mask()
|
340 |
+
)
|
341 |
+
|
342 |
+
self.vocab_size = vocab_size
|
343 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
344 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
345 |
+
self.ln_final = LayerNorm(transformer_width)
|
346 |
+
|
347 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
348 |
+
self.logit_scale = nn.Parameter(torch.ones([]))
|
349 |
+
|
350 |
+
def build_attention_mask(self):
|
351 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
352 |
+
# pytorch uses additive attention mask; fill with -inf
|
353 |
+
mask = torch.empty(self.context_length, self.context_length)
|
354 |
+
mask.fill_(float("-inf"))
|
355 |
+
mask.triu_(1) # zero out the lower diagonal
|
356 |
+
return mask
|
357 |
+
|
358 |
+
@property
|
359 |
+
def dtype(self):
|
360 |
+
return self.visual.conv1.weight.dtype
|
361 |
+
|
362 |
+
def encode_image(self, image):
|
363 |
+
return self.visual(image.type(self.dtype))
|
364 |
+
|
365 |
+
def encode_text(self, text):
|
366 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
367 |
+
|
368 |
+
x = x + self.positional_embedding.type(self.dtype)
|
369 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
370 |
+
x,weight = self.transformer(x)
|
371 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
372 |
+
x = self.ln_final(x).type(self.dtype)
|
373 |
+
|
374 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
375 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
376 |
+
hide_feat=x
|
377 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
378 |
+
|
379 |
+
return x,weight,hide_feat
|
380 |
+
|
381 |
+
def forward(self, image, text):
|
382 |
+
image_features,weight_image,hide_image = self.encode_image(image)
|
383 |
+
text_features,weight_text,hide_text = self.encode_text(text)
|
384 |
+
|
385 |
+
# normalized features
|
386 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
387 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
388 |
+
|
389 |
+
# cosine similarity as logits
|
390 |
+
logit_scale = self.logit_scale.exp()
|
391 |
+
logits_per_iamge = logit_scale * image_features @ text_features.t()
|
392 |
+
logits_per_text = logit_scale * text_features @ image_features.t()
|
393 |
+
|
394 |
+
|
395 |
+
|
396 |
+
|
397 |
+
# shape = [global_batch_size, global_batch_size]
|
398 |
+
#return image_features, text_features logits_per_iamge, logits_per_text,hide_image,hide_text
|
399 |
+
return image_features, text_features,hide_image,hide_text
|
400 |
+
|
401 |
+
def convert_weights(model: nn.Module):
|
402 |
+
"""Convert applicable model parameters to fp16"""
|
403 |
+
|
404 |
+
def _convert_weights_to_fp16(l):
|
405 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
406 |
+
l.weight.data = l.weight.data.half()
|
407 |
+
if l.bias is not None:
|
408 |
+
l.bias.data = l.bias.data.half()
|
409 |
+
|
410 |
+
if isinstance(l, nn.MultiheadAttention):
|
411 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
412 |
+
tensor = getattr(l, attr)
|
413 |
+
if tensor is not None:
|
414 |
+
tensor.data = tensor.data.half()
|
415 |
+
|
416 |
+
for name in ["text_projection", "proj"]:
|
417 |
+
if hasattr(l, name):
|
418 |
+
attr = getattr(l, name)
|
419 |
+
if attr is not None:
|
420 |
+
attr.data = attr.data.half()
|
421 |
+
|
422 |
+
model.apply(_convert_weights_to_fp16)
|
423 |
+
|
424 |
+
|
425 |
+
def build_model(state_dict: dict):
|
426 |
+
vit = "visual.proj" in state_dict
|
427 |
+
|
428 |
+
if vit:
|
429 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
430 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
431 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
432 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
433 |
+
image_resolution = vision_patch_size * grid_size
|
434 |
+
else:
|
435 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
436 |
+
vision_layers = tuple(counts)
|
437 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
438 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
439 |
+
vision_patch_size = None
|
440 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
441 |
+
image_resolution = output_width * 32
|
442 |
+
|
443 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
444 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
445 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
446 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
447 |
+
transformer_heads = transformer_width // 64
|
448 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
449 |
+
|
450 |
+
model = CLIP(
|
451 |
+
embed_dim,
|
452 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
453 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
454 |
+
)
|
455 |
+
|
456 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
457 |
+
del state_dict[key]
|
458 |
+
|
459 |
+
convert_weights(model)
|
460 |
+
model.load_state_dict(state_dict)
|
461 |
+
return model.eval()
|
CLIP/model_moe.py
ADDED
@@ -0,0 +1,498 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from torch import nn
|
7 |
+
from mixture_of_experts import MoE
|
8 |
+
|
9 |
+
|
10 |
+
class Bottleneck(nn.Module):
|
11 |
+
expansion = 4
|
12 |
+
|
13 |
+
def __init__(self, inplanes, planes, stride=1):
|
14 |
+
super().__init__()
|
15 |
+
|
16 |
+
# all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1
|
17 |
+
self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False)
|
18 |
+
self.bn1 = nn.BatchNorm2d(planes)
|
19 |
+
|
20 |
+
self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False)
|
21 |
+
self.bn2 = nn.BatchNorm2d(planes)
|
22 |
+
|
23 |
+
self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity()
|
24 |
+
|
25 |
+
self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False)
|
26 |
+
self.bn3 = nn.BatchNorm2d(planes * self.expansion)
|
27 |
+
|
28 |
+
self.relu = nn.ReLU(inplace=True)
|
29 |
+
self.downsample = None
|
30 |
+
self.stride = stride
|
31 |
+
|
32 |
+
if stride > 1 or inplanes != planes * Bottleneck.expansion:
|
33 |
+
# downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1
|
34 |
+
self.downsample = nn.Sequential(OrderedDict([
|
35 |
+
("-1", nn.AvgPool2d(stride)),
|
36 |
+
("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)),
|
37 |
+
("1", nn.BatchNorm2d(planes * self.expansion))
|
38 |
+
]))
|
39 |
+
|
40 |
+
def forward(self, x: torch.Tensor):
|
41 |
+
identity = x
|
42 |
+
|
43 |
+
out = self.relu(self.bn1(self.conv1(x)))
|
44 |
+
out = self.relu(self.bn2(self.conv2(out)))
|
45 |
+
out = self.avgpool(out)
|
46 |
+
out = self.bn3(self.conv3(out))
|
47 |
+
|
48 |
+
if self.downsample is not None:
|
49 |
+
identity = self.downsample(x)
|
50 |
+
|
51 |
+
out += identity
|
52 |
+
out = self.relu(out)
|
53 |
+
return out
|
54 |
+
|
55 |
+
|
56 |
+
class AttentionPool2d(nn.Module):
|
57 |
+
def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None):
|
58 |
+
super().__init__()
|
59 |
+
self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5)
|
60 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim)
|
61 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim)
|
62 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim)
|
63 |
+
self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim)
|
64 |
+
self.num_heads = num_heads
|
65 |
+
|
66 |
+
def forward(self, x):
|
67 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC
|
68 |
+
x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC
|
69 |
+
x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC
|
70 |
+
x, _ = F.multi_head_attention_forward(
|
71 |
+
query=x, key=x, value=x,
|
72 |
+
embed_dim_to_check=x.shape[-1],
|
73 |
+
num_heads=self.num_heads,
|
74 |
+
q_proj_weight=self.q_proj.weight,
|
75 |
+
k_proj_weight=self.k_proj.weight,
|
76 |
+
v_proj_weight=self.v_proj.weight,
|
77 |
+
in_proj_weight=None,
|
78 |
+
in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]),
|
79 |
+
bias_k=None,
|
80 |
+
bias_v=None,
|
81 |
+
add_zero_attn=False,
|
82 |
+
dropout_p=0,
|
83 |
+
out_proj_weight=self.c_proj.weight,
|
84 |
+
out_proj_bias=self.c_proj.bias,
|
85 |
+
use_separate_proj_weight=True,
|
86 |
+
training=self.training,
|
87 |
+
need_weights=False
|
88 |
+
)
|
89 |
+
|
90 |
+
return x[0]
|
91 |
+
|
92 |
+
|
93 |
+
class ModifiedResNet(nn.Module):
|
94 |
+
"""
|
95 |
+
A ResNet class that is similar to torchvision's but contains the following changes:
|
96 |
+
- There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool.
|
97 |
+
- Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1
|
98 |
+
- The final pooling layer is a QKV attention instead of an average pool
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(self, layers, output_dim, heads, input_resolution=224, width=64):
|
102 |
+
super().__init__()
|
103 |
+
self.output_dim = output_dim
|
104 |
+
self.input_resolution = input_resolution
|
105 |
+
|
106 |
+
# the 3-layer stem
|
107 |
+
self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False)
|
108 |
+
self.bn1 = nn.BatchNorm2d(width // 2)
|
109 |
+
self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False)
|
110 |
+
self.bn2 = nn.BatchNorm2d(width // 2)
|
111 |
+
self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False)
|
112 |
+
self.bn3 = nn.BatchNorm2d(width)
|
113 |
+
self.avgpool = nn.AvgPool2d(2)
|
114 |
+
self.relu = nn.ReLU(inplace=True)
|
115 |
+
|
116 |
+
# residual layers
|
117 |
+
self._inplanes = width # this is a *mutable* variable used during construction
|
118 |
+
self.layer1 = self._make_layer(width, layers[0])
|
119 |
+
self.layer2 = self._make_layer(width * 2, layers[1], stride=2)
|
120 |
+
self.layer3 = self._make_layer(width * 4, layers[2], stride=2)
|
121 |
+
self.layer4 = self._make_layer(width * 8, layers[3], stride=2)
|
122 |
+
|
123 |
+
embed_dim = width * 32 # the ResNet feature dimension
|
124 |
+
self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim)
|
125 |
+
|
126 |
+
def _make_layer(self, planes, blocks, stride=1):
|
127 |
+
layers = [Bottleneck(self._inplanes, planes, stride)]
|
128 |
+
|
129 |
+
self._inplanes = planes * Bottleneck.expansion
|
130 |
+
for _ in range(1, blocks):
|
131 |
+
layers.append(Bottleneck(self._inplanes, planes))
|
132 |
+
|
133 |
+
return nn.Sequential(*layers)
|
134 |
+
|
135 |
+
def forward(self, x):
|
136 |
+
def stem(x):
|
137 |
+
for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]:
|
138 |
+
x = self.relu(bn(conv(x)))
|
139 |
+
x = self.avgpool(x)
|
140 |
+
return x
|
141 |
+
|
142 |
+
x = x.type(self.conv1.weight.dtype)
|
143 |
+
x = stem(x)
|
144 |
+
x = self.layer1(x)
|
145 |
+
x = self.layer2(x)
|
146 |
+
x = self.layer3(x)
|
147 |
+
|
148 |
+
|
149 |
+
#x = self.layer4(x)
|
150 |
+
#print(x.shape)
|
151 |
+
#x = self.attnpool(x)
|
152 |
+
|
153 |
+
return x
|
154 |
+
|
155 |
+
|
156 |
+
class LayerNorm(nn.LayerNorm):
|
157 |
+
"""Subclass torch's LayerNorm to handle fp16."""
|
158 |
+
|
159 |
+
def forward(self, x: torch.Tensor):
|
160 |
+
orig_type = x.dtype
|
161 |
+
ret = super().forward(x.type(torch.float32))
|
162 |
+
return ret.type(orig_type)
|
163 |
+
|
164 |
+
|
165 |
+
class QuickGELU(nn.Module):
|
166 |
+
def forward(self, x: torch.Tensor):
|
167 |
+
return x * torch.sigmoid(1.702 * x)
|
168 |
+
|
169 |
+
|
170 |
+
class ResidualAttentionBlock(nn.Module):
|
171 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
172 |
+
super().__init__()
|
173 |
+
|
174 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
175 |
+
self.ln_1 = LayerNorm(d_model)
|
176 |
+
self.mlp = nn.Sequential(OrderedDict([
|
177 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
178 |
+
("gelu", QuickGELU()),
|
179 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
180 |
+
]))
|
181 |
+
self.ln_2 = LayerNorm(d_model)
|
182 |
+
self.attn_mask = attn_mask
|
183 |
+
|
184 |
+
def attention(self, x: torch.Tensor):
|
185 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
186 |
+
return self.attn(x, x, x, need_weights=True, attn_mask=self.attn_mask)
|
187 |
+
|
188 |
+
def forward(self, x: torch.Tensor):
|
189 |
+
attention_res = self.attention(self.ln_1(x))
|
190 |
+
x, weight = x+attention_res[0], attention_res[1]
|
191 |
+
x = x + self.mlp(self.ln_2(x))
|
192 |
+
return x, weight
|
193 |
+
|
194 |
+
|
195 |
+
class ResidualAttentionBlock_MOE(nn.Module):
|
196 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
197 |
+
super().__init__()
|
198 |
+
|
199 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
200 |
+
self.ln_1 = LayerNorm(d_model)
|
201 |
+
self.mlp = moe = MoE(
|
202 |
+
dim = 512,
|
203 |
+
num_experts = 16, # increase the experts (# parameters) of your model without increasing computation
|
204 |
+
hidden_dim = 512 * 4, # size of hidden dimension in each expert, defaults to 4 * dimension
|
205 |
+
activation = nn.LeakyReLU, # use your preferred activation, will default to GELU
|
206 |
+
second_policy_train = 'random', # in top_2 gating, policy for whether to use a second-place expert
|
207 |
+
second_policy_eval = 'random', # all (always) | none (never) | threshold (if gate value > the given threshold) | random (if gate value > threshold * random_uniform(0, 1))
|
208 |
+
second_threshold_train = 0.2,
|
209 |
+
second_threshold_eval = 0.2,
|
210 |
+
capacity_factor_train = 1.25, # experts have fixed capacity per batch. we need some extra capacity in case gating is not perfectly balanced.
|
211 |
+
capacity_factor_eval = 2., # capacity_factor_* should be set to a value >=1
|
212 |
+
loss_coef = 1e-2 # multiplier on the auxiliary expert balancing auxiliary loss
|
213 |
+
)
|
214 |
+
|
215 |
+
self.ln_2 = LayerNorm(d_model)
|
216 |
+
self.attn_mask = attn_mask
|
217 |
+
|
218 |
+
def attention(self, x: torch.Tensor):
|
219 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
220 |
+
return self.attn(x, x, x, need_weights=True, attn_mask=self.attn_mask)
|
221 |
+
|
222 |
+
def forward(self, x: torch.Tensor):
|
223 |
+
attention_res = self.attention(self.ln_1(x))
|
224 |
+
x, weight = x+attention_res[0], attention_res[1]
|
225 |
+
x = x + self.mlp(self.ln_2(x))
|
226 |
+
return x, weight
|
227 |
+
|
228 |
+
|
229 |
+
|
230 |
+
class ResidualAttentionBlock_old(nn.Module):
|
231 |
+
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None):
|
232 |
+
super().__init__()
|
233 |
+
|
234 |
+
self.attn = nn.MultiheadAttention(d_model, n_head)
|
235 |
+
self.ln_1 = LayerNorm(d_model)
|
236 |
+
self.mlp = nn.Sequential(OrderedDict([
|
237 |
+
("c_fc", nn.Linear(d_model, d_model * 4)),
|
238 |
+
("gelu", QuickGELU()),
|
239 |
+
("c_proj", nn.Linear(d_model * 4, d_model))
|
240 |
+
]))
|
241 |
+
self.ln_2 = LayerNorm(d_model)
|
242 |
+
self.attn_mask = attn_mask
|
243 |
+
|
244 |
+
def attention(self, x: torch.Tensor):
|
245 |
+
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None
|
246 |
+
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0]
|
247 |
+
|
248 |
+
def forward(self, x: torch.Tensor):
|
249 |
+
x = x + self.attention(self.ln_1(x))
|
250 |
+
x = x + self.mlp(self.ln_2(x))
|
251 |
+
return x
|
252 |
+
|
253 |
+
|
254 |
+
class Transformer(nn.Module):
|
255 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
256 |
+
super().__init__()
|
257 |
+
self.width = width
|
258 |
+
self.layers = layers
|
259 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
260 |
+
|
261 |
+
def forward(self, x: torch.Tensor):
|
262 |
+
weights = []
|
263 |
+
r=0
|
264 |
+
|
265 |
+
for block in self.resblocks:
|
266 |
+
#if r<=10:
|
267 |
+
# for param in block.parameters():
|
268 |
+
# param.requires_grad = False
|
269 |
+
#if r%2==0:
|
270 |
+
|
271 |
+
x, weight = block(x)
|
272 |
+
weights.append(weight)
|
273 |
+
#print("r=",r)
|
274 |
+
#if r==5:
|
275 |
+
# break
|
276 |
+
#r = r + 1
|
277 |
+
|
278 |
+
return x, weights
|
279 |
+
|
280 |
+
### OLD transformer without attetion
|
281 |
+
class Transformer_Ecnoder_clip(nn.Module):
|
282 |
+
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None):
|
283 |
+
super().__init__()
|
284 |
+
self.width = width
|
285 |
+
self.layers = layers
|
286 |
+
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)])
|
287 |
+
|
288 |
+
def forward(self, x: torch.Tensor):
|
289 |
+
return self.resblocks(x)
|
290 |
+
|
291 |
+
|
292 |
+
class VisualTransformer(nn.Module):
|
293 |
+
def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int):
|
294 |
+
super().__init__()
|
295 |
+
self.input_resolution = input_resolution
|
296 |
+
self.output_dim = output_dim
|
297 |
+
self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False)
|
298 |
+
|
299 |
+
scale = width ** -0.5
|
300 |
+
self.class_embedding = nn.Parameter(scale * torch.randn(width))
|
301 |
+
self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width))
|
302 |
+
self.ln_pre = LayerNorm(width)
|
303 |
+
|
304 |
+
self.transformer = Transformer(width, layers, heads)
|
305 |
+
|
306 |
+
self.ln_post = LayerNorm(width)
|
307 |
+
self.proj = nn.Parameter(scale * torch.randn(width, 512))
|
308 |
+
|
309 |
+
def forward(self, x: torch.Tensor):
|
310 |
+
x = self.conv1(x) # shape = [*, width, grid, grid]
|
311 |
+
x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2]
|
312 |
+
x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width]
|
313 |
+
x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width]
|
314 |
+
|
315 |
+
|
316 |
+
x = x + self.positional_embedding.to(x.dtype)
|
317 |
+
x = self.ln_pre(x)
|
318 |
+
|
319 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
320 |
+
x,weight = self.transformer(x)
|
321 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
322 |
+
#hide_feat=x
|
323 |
+
#x = self.ln_post(x[:, 0, :])
|
324 |
+
#x=self.ln_post(x)
|
325 |
+
if self.proj is not None:
|
326 |
+
hide_feat=self.ln_post(x) @ self.proj
|
327 |
+
x = self.ln_post(x[:, 0, :]) @ self.proj
|
328 |
+
#print(hide_feat.shape)
|
329 |
+
|
330 |
+
return x,weight,hide_feat
|
331 |
+
|
332 |
+
|
333 |
+
class CLIP(nn.Module):
|
334 |
+
def __init__(self,
|
335 |
+
embed_dim: int,
|
336 |
+
# vision
|
337 |
+
image_resolution: int,
|
338 |
+
vision_layers: Union[Tuple[int, int, int, int], int],
|
339 |
+
vision_width: int,
|
340 |
+
vision_patch_size: int,
|
341 |
+
# text
|
342 |
+
context_length: int,
|
343 |
+
vocab_size: int,
|
344 |
+
transformer_width: int,
|
345 |
+
transformer_heads: int,
|
346 |
+
transformer_layers: int
|
347 |
+
):
|
348 |
+
super().__init__()
|
349 |
+
|
350 |
+
self.context_length = context_length
|
351 |
+
|
352 |
+
if isinstance(vision_layers, (tuple, list)):
|
353 |
+
vision_heads = vision_width * 32 // 64
|
354 |
+
self.visual = ModifiedResNet(
|
355 |
+
layers=vision_layers,
|
356 |
+
output_dim=embed_dim,
|
357 |
+
heads=vision_heads,
|
358 |
+
input_resolution=image_resolution,
|
359 |
+
width=vision_width
|
360 |
+
)
|
361 |
+
else:
|
362 |
+
vision_heads = vision_width // 64
|
363 |
+
self.visual = VisualTransformer(
|
364 |
+
input_resolution=image_resolution,
|
365 |
+
patch_size=vision_patch_size,
|
366 |
+
width=vision_width,
|
367 |
+
layers=vision_layers,
|
368 |
+
heads=vision_heads,
|
369 |
+
output_dim=embed_dim
|
370 |
+
)
|
371 |
+
|
372 |
+
self.transformer = Transformer(
|
373 |
+
width=transformer_width,
|
374 |
+
layers=transformer_layers,
|
375 |
+
heads=transformer_heads,
|
376 |
+
attn_mask=self.build_attention_mask()
|
377 |
+
)
|
378 |
+
|
379 |
+
self.vocab_size = vocab_size
|
380 |
+
self.token_embedding = nn.Embedding(vocab_size, transformer_width)
|
381 |
+
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width))
|
382 |
+
self.ln_final = LayerNorm(transformer_width)
|
383 |
+
|
384 |
+
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim))
|
385 |
+
self.logit_scale = nn.Parameter(torch.ones([]))
|
386 |
+
|
387 |
+
def build_attention_mask(self):
|
388 |
+
# lazily create causal attention mask, with full attention between the vision tokens
|
389 |
+
# pytorch uses additive attention mask; fill with -inf
|
390 |
+
mask = torch.empty(self.context_length, self.context_length)
|
391 |
+
mask.fill_(float("-inf"))
|
392 |
+
mask.triu_(1) # zero out the lower diagonal
|
393 |
+
return mask
|
394 |
+
|
395 |
+
@property
|
396 |
+
def dtype(self):
|
397 |
+
return self.visual.conv1.weight.dtype
|
398 |
+
|
399 |
+
def encode_image(self, image):
|
400 |
+
return self.visual(image.type(self.dtype))
|
401 |
+
|
402 |
+
def encode_text(self, text):
|
403 |
+
x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model]
|
404 |
+
|
405 |
+
x = x + self.positional_embedding.type(self.dtype)
|
406 |
+
x = x.permute(1, 0, 2) # NLD -> LND
|
407 |
+
x,weight = self.transformer(x)
|
408 |
+
x = x.permute(1, 0, 2) # LND -> NLD
|
409 |
+
x = self.ln_final(x).type(self.dtype)
|
410 |
+
|
411 |
+
# x.shape = [batch_size, n_ctx, transformer.width]
|
412 |
+
# take features from the eot embedding (eot_token is the highest number in each sequence)
|
413 |
+
hide_feat=x
|
414 |
+
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection
|
415 |
+
|
416 |
+
return x,weight,hide_feat
|
417 |
+
|
418 |
+
def forward(self, image, text):
|
419 |
+
image_features,weight_image,hide_image = self.encode_image(image)
|
420 |
+
text_features,weight_text,hide_text = self.encode_text(text)
|
421 |
+
|
422 |
+
# normalized features
|
423 |
+
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
|
424 |
+
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
|
425 |
+
|
426 |
+
# cosine similarity as logits
|
427 |
+
logit_scale = self.logit_scale.exp()
|
428 |
+
logits_per_iamge = logit_scale * image_features @ text_features.t()
|
429 |
+
logits_per_text = logit_scale * text_features @ image_features.t()
|
430 |
+
|
431 |
+
|
432 |
+
|
433 |
+
|
434 |
+
# shape = [global_batch_size, global_batch_size]
|
435 |
+
#return image_features, text_features logits_per_iamge, logits_per_text,hide_image,hide_text
|
436 |
+
return image_features, text_features,hide_image,hide_text
|
437 |
+
|
438 |
+
def convert_weights(model: nn.Module):
|
439 |
+
"""Convert applicable model parameters to fp16"""
|
440 |
+
|
441 |
+
def _convert_weights_to_fp16(l):
|
442 |
+
if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
|
443 |
+
l.weight.data = l.weight.data.half()
|
444 |
+
if l.bias is not None:
|
445 |
+
l.bias.data = l.bias.data.half()
|
446 |
+
|
447 |
+
if isinstance(l, nn.MultiheadAttention):
|
448 |
+
for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
|
449 |
+
tensor = getattr(l, attr)
|
450 |
+
if tensor is not None:
|
451 |
+
tensor.data = tensor.data.half()
|
452 |
+
|
453 |
+
for name in ["text_projection", "proj"]:
|
454 |
+
if hasattr(l, name):
|
455 |
+
attr = getattr(l, name)
|
456 |
+
if attr is not None:
|
457 |
+
attr.data = attr.data.half()
|
458 |
+
|
459 |
+
model.apply(_convert_weights_to_fp16)
|
460 |
+
|
461 |
+
|
462 |
+
def build_model(state_dict: dict):
|
463 |
+
vit = "visual.proj" in state_dict
|
464 |
+
|
465 |
+
if vit:
|
466 |
+
vision_width = state_dict["visual.conv1.weight"].shape[0]
|
467 |
+
vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")])
|
468 |
+
vision_patch_size = state_dict["visual.conv1.weight"].shape[-1]
|
469 |
+
grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5)
|
470 |
+
image_resolution = vision_patch_size * grid_size
|
471 |
+
else:
|
472 |
+
counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]]
|
473 |
+
vision_layers = tuple(counts)
|
474 |
+
vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0]
|
475 |
+
output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5)
|
476 |
+
vision_patch_size = None
|
477 |
+
assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0]
|
478 |
+
image_resolution = output_width * 32
|
479 |
+
|
480 |
+
embed_dim = state_dict["text_projection"].shape[1]
|
481 |
+
context_length = state_dict["positional_embedding"].shape[0]
|
482 |
+
vocab_size = state_dict["token_embedding.weight"].shape[0]
|
483 |
+
transformer_width = state_dict["ln_final.weight"].shape[0]
|
484 |
+
transformer_heads = transformer_width // 64
|
485 |
+
transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks")))
|
486 |
+
|
487 |
+
model = CLIP(
|
488 |
+
embed_dim,
|
489 |
+
image_resolution, vision_layers, vision_width, vision_patch_size,
|
490 |
+
context_length, vocab_size, transformer_width, transformer_heads, transformer_layers
|
491 |
+
)
|
492 |
+
|
493 |
+
for key in ["input_resolution", "context_length", "vocab_size"]:
|
494 |
+
del state_dict[key]
|
495 |
+
|
496 |
+
convert_weights(model)
|
497 |
+
model.load_state_dict(state_dict)
|
498 |
+
return model.eval()
|
CLIP/simple_tokenizer.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import html
|
3 |
+
import os
|
4 |
+
from functools import lru_cache
|
5 |
+
|
6 |
+
import ftfy
|
7 |
+
import regex as re
|
8 |
+
|
9 |
+
|
10 |
+
@lru_cache()
|
11 |
+
def default_bpe():
|
12 |
+
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz")
|
13 |
+
|
14 |
+
|
15 |
+
@lru_cache()
|
16 |
+
def bytes_to_unicode():
|
17 |
+
"""
|
18 |
+
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
19 |
+
The reversible bpe codes work on unicode strings.
|
20 |
+
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
21 |
+
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
22 |
+
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
23 |
+
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
24 |
+
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
25 |
+
"""
|
26 |
+
bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
|
27 |
+
cs = bs[:]
|
28 |
+
n = 0
|
29 |
+
for b in range(2**8):
|
30 |
+
if b not in bs:
|
31 |
+
bs.append(b)
|
32 |
+
cs.append(2**8+n)
|
33 |
+
n += 1
|
34 |
+
cs = [chr(n) for n in cs]
|
35 |
+
return dict(zip(bs, cs))
|
36 |
+
|
37 |
+
|
38 |
+
def get_pairs(word):
|
39 |
+
"""Return set of symbol pairs in a word.
|
40 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
41 |
+
"""
|
42 |
+
pairs = set()
|
43 |
+
prev_char = word[0]
|
44 |
+
for char in word[1:]:
|
45 |
+
pairs.add((prev_char, char))
|
46 |
+
prev_char = char
|
47 |
+
return pairs
|
48 |
+
|
49 |
+
|
50 |
+
def basic_clean(text):
|
51 |
+
text = ftfy.fix_text(text)
|
52 |
+
text = html.unescape(html.unescape(text))
|
53 |
+
return text.strip()
|
54 |
+
|
55 |
+
|
56 |
+
def whitespace_clean(text):
|
57 |
+
text = re.sub(r'\s+', ' ', text)
|
58 |
+
text = text.strip()
|
59 |
+
return text
|
60 |
+
|
61 |
+
|
62 |
+
class SimpleTokenizer(object):
|
63 |
+
def __init__(self, bpe_path: str = default_bpe()):
|
64 |
+
self.byte_encoder = bytes_to_unicode()
|
65 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
66 |
+
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n')
|
67 |
+
merges = merges[1:49152-256-2+1]
|
68 |
+
merges = [tuple(merge.split()) for merge in merges]
|
69 |
+
vocab = list(bytes_to_unicode().values())
|
70 |
+
vocab = vocab + [v+'</w>' for v in vocab]
|
71 |
+
for merge in merges:
|
72 |
+
vocab.append(''.join(merge))
|
73 |
+
vocab.extend(['<|startoftext|>', '<|endoftext|>'])
|
74 |
+
self.encoder = dict(zip(vocab, range(len(vocab))))
|
75 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
76 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
77 |
+
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'}
|
78 |
+
self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE)
|
79 |
+
|
80 |
+
def bpe(self, token):
|
81 |
+
if token in self.cache:
|
82 |
+
return self.cache[token]
|
83 |
+
word = tuple(token[:-1]) + ( token[-1] + '</w>',)
|
84 |
+
pairs = get_pairs(word)
|
85 |
+
|
86 |
+
if not pairs:
|
87 |
+
return token+'</w>'
|
88 |
+
|
89 |
+
while True:
|
90 |
+
bigram = min(pairs, key = lambda pair: self.bpe_ranks.get(pair, float('inf')))
|
91 |
+
if bigram not in self.bpe_ranks:
|
92 |
+
break
|
93 |
+
first, second = bigram
|
94 |
+
new_word = []
|
95 |
+
i = 0
|
96 |
+
while i < len(word):
|
97 |
+
try:
|
98 |
+
j = word.index(first, i)
|
99 |
+
new_word.extend(word[i:j])
|
100 |
+
i = j
|
101 |
+
except:
|
102 |
+
new_word.extend(word[i:])
|
103 |
+
break
|
104 |
+
|
105 |
+
if word[i] == first and i < len(word)-1 and word[i+1] == second:
|
106 |
+
new_word.append(first+second)
|
107 |
+
i += 2
|
108 |
+
else:
|
109 |
+
new_word.append(word[i])
|
110 |
+
i += 1
|
111 |
+
new_word = tuple(new_word)
|
112 |
+
word = new_word
|
113 |
+
if len(word) == 1:
|
114 |
+
break
|
115 |
+
else:
|
116 |
+
pairs = get_pairs(word)
|
117 |
+
word = ' '.join(word)
|
118 |
+
self.cache[token] = word
|
119 |
+
return word
|
120 |
+
|
121 |
+
def encode(self, text):
|
122 |
+
bpe_tokens = []
|
123 |
+
text = whitespace_clean(basic_clean(text)).lower()
|
124 |
+
for token in re.findall(self.pat, text):
|
125 |
+
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8'))
|
126 |
+
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' '))
|
127 |
+
return bpe_tokens
|
128 |
+
|
129 |
+
def decode(self, tokens):
|
130 |
+
text = ''.join([self.decoder[token] for token in tokens])
|
131 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ')
|
132 |
+
return text
|