meg-huggingface commited on
Commit
9bd728a
·
1 Parent(s): 9be7bfc

Trying toxigen download

Browse files
main_backend.py CHANGED
@@ -2,6 +2,7 @@ import logging
2
  import pprint
3
 
4
  from huggingface_hub import snapshot_download
 
5
 
6
  logging.getLogger("openai").setLevel(logging.WARNING)
7
 
@@ -21,6 +22,10 @@ RUNNING_STATUS = "RUNNING"
21
  FINISHED_STATUS = "FINISHED"
22
  FAILED_STATUS = "FAILED"
23
 
 
 
 
 
24
  print("Downloading snapshot from %s to %s" % (RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND))
25
  snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", token=TOKEN, max_workers=60)
26
  snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", token=TOKEN, max_workers=60)
 
2
  import pprint
3
 
4
  from huggingface_hub import snapshot_download
5
+ from datasets import load_dataset
6
 
7
  logging.getLogger("openai").setLevel(logging.WARNING)
8
 
 
22
  FINISHED_STATUS = "FINISHED"
23
  FAILED_STATUS = "FAILED"
24
 
25
+ print("JUST trying toxigen access...")
26
+ load_dataset("skg/toxigen-data", token=TOKEN)
27
+ print("Done.")
28
+
29
  print("Downloading snapshot from %s to %s" % (RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND))
30
  snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", token=TOKEN, max_workers=60)
31
  snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", token=TOKEN, max_workers=60)
src/backend/run_eval_suite.py CHANGED
@@ -2,7 +2,6 @@ import json
2
  import os
3
  import logging
4
  from datetime import datetime
5
- import spaces
6
 
7
  from lm_eval import tasks, evaluator, utils
8
 
@@ -11,7 +10,6 @@ from src.backend.manage_requests import EvalRequest
11
 
12
  logging.getLogger("openai").setLevel(logging.WARNING)
13
 
14
- @spaces.GPU
15
  def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None):
16
  if limit:
17
  print(
 
2
  import os
3
  import logging
4
  from datetime import datetime
 
5
 
6
  from lm_eval import tasks, evaluator, utils
7
 
 
10
 
11
  logging.getLogger("openai").setLevel(logging.WARNING)
12
 
 
13
  def run_evaluation(eval_request: EvalRequest, task_names, num_fewshot, batch_size, device, local_dir: str, results_repo: str, no_cache=True, limit=None):
14
  if limit:
15
  print(
src/display/utils.py CHANGED
@@ -31,15 +31,15 @@ auto_eval_column_dict.append(["average", ColumnContent, ColumnContent("Average
31
  for task in Tasks:
32
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
33
  # Model information
34
- auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False)])
35
- auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False)])
36
- auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True)])
37
- auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False)])
38
- auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False)])
39
- auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False)])
40
- auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False)])
41
- auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False)])
42
- auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False)])
43
  # Dummy column for the search bar (hidden by the custom CSS)
44
  auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
45
 
@@ -127,7 +127,7 @@ EVAL_TYPES = [c.type for c in fields(EvalQueueColumn)]
127
  BENCHMARK_COLS = [t.value.col_name for t in Tasks]
128
 
129
  NUMERIC_INTERVALS = {
130
- "?": pd.Interval(-1, 0, closed="right"),
131
  "~1.5": pd.Interval(0, 2, closed="right"),
132
  "~3": pd.Interval(2, 4, closed="right"),
133
  "~7": pd.Interval(4, 9, closed="right"),
 
31
  for task in Tasks:
32
  auto_eval_column_dict.append([task.name, ColumnContent, ColumnContent(task.value.col_name, "number", True)])
33
  # Model information
34
+ auto_eval_column_dict.append(["model_type", ColumnContent, ColumnContent("Type", "str", False, hidden=True)])
35
+ auto_eval_column_dict.append(["architecture", ColumnContent, ColumnContent("Architecture", "str", False, hidden=True)])
36
+ auto_eval_column_dict.append(["weight_type", ColumnContent, ColumnContent("Weight type", "str", False, True, hidden=True)])
37
+ auto_eval_column_dict.append(["precision", ColumnContent, ColumnContent("Precision", "str", False, hidden=True)])
38
+ auto_eval_column_dict.append(["license", ColumnContent, ColumnContent("Hub License", "str", False, hidden=True)])
39
+ auto_eval_column_dict.append(["params", ColumnContent, ColumnContent("#Params (B)", "number", False, hidden=True)])
40
+ auto_eval_column_dict.append(["likes", ColumnContent, ColumnContent("Hub ❤️", "number", False, hidden=True)])
41
+ auto_eval_column_dict.append(["still_on_hub", ColumnContent, ColumnContent("Available on the hub", "bool", False, hidden=True)])
42
+ auto_eval_column_dict.append(["revision", ColumnContent, ColumnContent("Model sha", "str", False, False, hidden=True)])
43
  # Dummy column for the search bar (hidden by the custom CSS)
44
  auto_eval_column_dict.append(["dummy", ColumnContent, ColumnContent("model_name_for_query", "str", False, dummy=True)])
45
 
 
127
  BENCHMARK_COLS = [t.value.col_name for t in Tasks]
128
 
129
  NUMERIC_INTERVALS = {
130
+ " ? ": pd.Interval(-1, 0, closed="right"),
131
  "~1.5": pd.Interval(0, 2, closed="right"),
132
  "~3": pd.Interval(2, 4, closed="right"),
133
  "~7": pd.Interval(4, 9, closed="right"),