meg HF staff commited on
Commit
8deb9e4
·
verified ·
1 Parent(s): f35f2fc

Removing -- is in place in https://huggingface.co./spaces/Bias-Leaderboard/leaderboard-backend

Browse files
Files changed (1) hide show
  1. main_backend.py +0 -84
main_backend.py DELETED
@@ -1,84 +0,0 @@
1
- import logging
2
- import pprint
3
-
4
- from huggingface_hub import snapshot_download
5
- from datasets import load_dataset
6
-
7
- logging.getLogger("openai").setLevel(logging.WARNING)
8
-
9
- from src.backend.run_eval_suite import run_evaluation
10
- from src.backend.manage_requests import check_completed_evals, get_eval_requests, set_eval_request
11
- from src.backend.sort_queue import sort_models_by_priority
12
-
13
- from src.envs import TOKEN, QUEUE_REPO, EVAL_REQUESTS_PATH_BACKEND, RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND, DEVICE, API, LIMIT
14
- from src.about import Tasks, NUM_FEWSHOT
15
- TASKS_HARNESS = [task.value.benchmark for task in Tasks]
16
-
17
- logging.basicConfig(level=logging.ERROR)
18
- pp = pprint.PrettyPrinter(width=80)
19
-
20
- PENDING_STATUS = "PENDING"
21
- RUNNING_STATUS = "RUNNING"
22
- FINISHED_STATUS = "FINISHED"
23
- FAILED_STATUS = "FAILED"
24
-
25
- print("JUST trying toxigen access...")
26
- load_dataset("skg/toxigen-data", token=TOKEN)
27
- print("Done.")
28
-
29
- print("Downloading snapshot from %s to %s" % (RESULTS_REPO, EVAL_RESULTS_PATH_BACKEND))
30
- snapshot_download(repo_id=RESULTS_REPO, revision="main", local_dir=EVAL_RESULTS_PATH_BACKEND, repo_type="dataset", token=TOKEN, max_workers=60)
31
- snapshot_download(repo_id=QUEUE_REPO, revision="main", local_dir=EVAL_REQUESTS_PATH_BACKEND, repo_type="dataset", token=TOKEN, max_workers=60)
32
-
33
- def run_auto_eval():
34
- current_pending_status = [PENDING_STATUS]
35
-
36
- # pull the eval dataset from the hub and parse any eval requests
37
- # check completed evals and set them to finished
38
- check_completed_evals(
39
- api=API,
40
- checked_status=RUNNING_STATUS,
41
- completed_status=FINISHED_STATUS,
42
- failed_status=FAILED_STATUS,
43
- hf_repo=QUEUE_REPO,
44
- local_dir=EVAL_REQUESTS_PATH_BACKEND,
45
- hf_repo_results=RESULTS_REPO,
46
- local_dir_results=EVAL_RESULTS_PATH_BACKEND
47
- )
48
-
49
- # Get all eval request that are PENDING, if you want to run other evals, change this parameter
50
- eval_requests = get_eval_requests(job_status=current_pending_status, hf_repo=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH_BACKEND)
51
- # Sort the evals by priority (first submitted first run)
52
- eval_requests = sort_models_by_priority(api=API, models=eval_requests)
53
-
54
- print(f"Found {len(eval_requests)} {','.join(current_pending_status)} eval requests")
55
-
56
- if len(eval_requests) == 0:
57
- return
58
-
59
- eval_request = eval_requests[0]
60
- pp.pprint(eval_request)
61
-
62
- set_eval_request(
63
- api=API,
64
- eval_request=eval_request,
65
- set_to_status=RUNNING_STATUS,
66
- hf_repo=QUEUE_REPO,
67
- local_dir=EVAL_REQUESTS_PATH_BACKEND,
68
- )
69
-
70
- run_evaluation(
71
- eval_request=eval_request,
72
- task_names=TASKS_HARNESS,
73
- num_fewshot=NUM_FEWSHOT,
74
- local_dir=EVAL_RESULTS_PATH_BACKEND,
75
- results_repo=RESULTS_REPO,
76
- batch_size=1,
77
- device=DEVICE,
78
- no_cache=True,
79
- limit=LIMIT
80
- )
81
-
82
-
83
- if __name__ == "__main__":
84
- run_auto_eval()