Spaces:
Sleeping
Sleeping
meg-huggingface
commited on
Commit
Β·
595e24c
1
Parent(s):
b266265
Read evals code
Browse files- app.py +95 -93
- src/about.py +6 -5
- src/envs.py +3 -3
- src/leaderboard/read_evals.py +2 -2
app.py
CHANGED
@@ -140,8 +140,8 @@ def filter_models(
|
|
140 |
return filtered_df
|
141 |
|
142 |
|
143 |
-
|
144 |
-
with
|
145 |
gr.HTML(TITLE)
|
146 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
147 |
|
@@ -150,36 +150,46 @@ with ui:
|
|
150 |
with gr.Row():
|
151 |
with gr.Column():
|
152 |
with gr.Row():
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
with gr.Row():
|
159 |
-
with gr.Column(
|
160 |
-
with gr.Row():
|
161 |
-
with gr.Column():
|
162 |
-
shown_columns = gr.CheckboxGroup(
|
163 |
-
choices=[
|
164 |
-
c.name
|
165 |
-
for c in fields(AutoEvalColumn)
|
166 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.advanced and not c.dummy
|
167 |
-
],
|
168 |
-
value=[
|
169 |
-
c.name
|
170 |
-
for c in fields(AutoEvalColumn)
|
171 |
-
if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.advanced
|
172 |
-
],
|
173 |
-
label="Select metrics to show",
|
174 |
-
elem_id="column-select",
|
175 |
-
interactive=True,
|
176 |
-
)
|
177 |
-
with gr.Column(scale=3):
|
178 |
for c in fields(AutoEvalColumn):
|
179 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.advanced and not c.dummy:
|
180 |
-
gr.
|
181 |
-
|
182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
shown_columns_advanced = gr.CheckboxGroup(
|
184 |
choices=[
|
185 |
c.name
|
@@ -198,30 +208,20 @@ with ui:
|
|
198 |
deleted_models_visibility = gr.Checkbox(
|
199 |
value=False, label="Show gated/private/deleted models", interactive=True, visible=True,
|
200 |
)
|
201 |
-
with gr.Column(min_width=320):
|
202 |
-
#with gr.Box(elem_id="box-filter"):
|
203 |
-
filter_columns_type = gr.CheckboxGroup(
|
204 |
-
label="Select model types to include",
|
205 |
-
choices=[t.to_str() for t in ModelType],
|
206 |
-
value=[t.to_str() for t in ModelType],
|
207 |
-
interactive=True,
|
208 |
-
elem_id="filter-columns-type",
|
209 |
-
)
|
210 |
-
filter_columns_precision = gr.CheckboxGroup(
|
211 |
-
label="Select precision levels to include",
|
212 |
-
choices=[i.value.name for i in Precision],
|
213 |
-
value=[i.value.name for i in Precision],
|
214 |
-
interactive=True,
|
215 |
-
elem_id="filter-columns-precision",
|
216 |
-
)
|
217 |
-
filter_columns_size = gr.CheckboxGroup(
|
218 |
-
label="Select model sizes (in billions of parameters) to include",
|
219 |
-
choices=list(NUMERIC_INTERVALS.keys()),
|
220 |
-
value=list(NUMERIC_INTERVALS.keys()),
|
221 |
-
interactive=True,
|
222 |
-
elem_id="filter-columns-size",
|
223 |
-
)
|
224 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
leaderboard_table = gr.components.Dataframe(
|
226 |
value=leaderboard_df[
|
227 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
@@ -277,45 +277,6 @@ with ui:
|
|
277 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
278 |
|
279 |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
280 |
-
with gr.Column():
|
281 |
-
with gr.Row():
|
282 |
-
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
283 |
-
|
284 |
-
with gr.Column():
|
285 |
-
with gr.Accordion(
|
286 |
-
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
287 |
-
open=False,
|
288 |
-
):
|
289 |
-
with gr.Row():
|
290 |
-
finished_eval_table = gr.components.Dataframe(
|
291 |
-
value=finished_eval_queue_df,
|
292 |
-
headers=EVAL_COLS,
|
293 |
-
datatype=EVAL_TYPES,
|
294 |
-
row_count=5,
|
295 |
-
)
|
296 |
-
with gr.Accordion(
|
297 |
-
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
298 |
-
open=False,
|
299 |
-
):
|
300 |
-
with gr.Row():
|
301 |
-
running_eval_table = gr.components.Dataframe(
|
302 |
-
value=running_eval_queue_df,
|
303 |
-
headers=EVAL_COLS,
|
304 |
-
datatype=EVAL_TYPES,
|
305 |
-
row_count=5,
|
306 |
-
)
|
307 |
-
|
308 |
-
with gr.Accordion(
|
309 |
-
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
310 |
-
open=False,
|
311 |
-
):
|
312 |
-
with gr.Row():
|
313 |
-
pending_eval_table = gr.components.Dataframe(
|
314 |
-
value=pending_eval_queue_df,
|
315 |
-
headers=EVAL_COLS,
|
316 |
-
datatype=EVAL_TYPES,
|
317 |
-
row_count=5,
|
318 |
-
)
|
319 |
with gr.Row():
|
320 |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
321 |
|
@@ -363,6 +324,47 @@ with ui:
|
|
363 |
submission_result,
|
364 |
)
|
365 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
366 |
with gr.Row():
|
367 |
with gr.Accordion("π Citation", open=False):
|
368 |
citation_button = gr.Textbox(
|
@@ -375,6 +377,6 @@ with ui:
|
|
375 |
|
376 |
scheduler = BackgroundScheduler()
|
377 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
378 |
-
scheduler.add_job(launch_backend, "interval", seconds=100)
|
379 |
scheduler.start()
|
380 |
-
|
|
|
140 |
return filtered_df
|
141 |
|
142 |
|
143 |
+
demo = gr.Blocks(css=custom_css)
|
144 |
+
with demo:
|
145 |
gr.HTML(TITLE)
|
146 |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
|
147 |
|
|
|
150 |
with gr.Row():
|
151 |
with gr.Column():
|
152 |
with gr.Row():
|
153 |
+
with gr.Column():
|
154 |
+
shown_columns = gr.CheckboxGroup(
|
155 |
+
choices=[
|
156 |
+
c.name
|
157 |
+
for c in fields(AutoEvalColumn)
|
158 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.advanced and not c.dummy
|
159 |
+
],
|
160 |
+
value=[
|
161 |
+
c.name
|
162 |
+
for c in fields(AutoEvalColumn)
|
163 |
+
if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.advanced
|
164 |
+
],
|
165 |
+
label="Select metrics to show",
|
166 |
+
elem_id="column-select",
|
167 |
+
interactive=True,
|
168 |
+
)
|
169 |
with gr.Row():
|
170 |
+
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
for c in fields(AutoEvalColumn):
|
172 |
if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.advanced and not c.dummy:
|
173 |
+
with gr.Row():
|
174 |
+
gr.Markdown("**" + c.name + "**. " + c.cite)
|
175 |
+
with gr.Column(min_width=320):
|
176 |
+
#with gr.Box(elem_id="box-filter"):
|
177 |
+
filter_columns_precision = gr.CheckboxGroup(
|
178 |
+
label="Select precision levels to include",
|
179 |
+
choices=[i.value.name for i in Precision],
|
180 |
+
value=[i.value.name for i in Precision],
|
181 |
+
interactive=True,
|
182 |
+
elem_id="filter-columns-precision",
|
183 |
+
)
|
184 |
+
filter_columns_size = gr.CheckboxGroup(
|
185 |
+
label="Select model sizes (in billions of parameters) to include",
|
186 |
+
choices=list(NUMERIC_INTERVALS.keys()),
|
187 |
+
value=list(NUMERIC_INTERVALS.keys()),
|
188 |
+
interactive=True,
|
189 |
+
elem_id="filter-columns-size",
|
190 |
+
)
|
191 |
+
#with gr.Row():
|
192 |
+
with gr.Accordion("Advanced options [WIP]", open=False):
|
193 |
shown_columns_advanced = gr.CheckboxGroup(
|
194 |
choices=[
|
195 |
c.name
|
|
|
208 |
deleted_models_visibility = gr.Checkbox(
|
209 |
value=False, label="Show gated/private/deleted models", interactive=True, visible=True,
|
210 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
+
filter_columns_type = gr.CheckboxGroup(
|
213 |
+
label="Select model types to include",
|
214 |
+
choices=[t.to_str() for t in ModelType],
|
215 |
+
value=[t.to_str() for t in ModelType],
|
216 |
+
interactive=True,
|
217 |
+
elem_id="filter-columns-type",
|
218 |
+
)
|
219 |
+
with gr.Row():
|
220 |
+
search_bar = gr.Textbox(
|
221 |
+
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
|
222 |
+
show_label=False,
|
223 |
+
elem_id="search-bar",
|
224 |
+
)
|
225 |
leaderboard_table = gr.components.Dataframe(
|
226 |
value=leaderboard_df[
|
227 |
[c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
|
|
277 |
gr.Markdown(LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
|
278 |
|
279 |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
with gr.Row():
|
281 |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
|
282 |
|
|
|
324 |
submission_result,
|
325 |
)
|
326 |
|
327 |
+
with gr.Column():
|
328 |
+
with gr.Row():
|
329 |
+
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
|
330 |
+
|
331 |
+
with gr.TabItem("Submission Status", elem_id="llm-benchmark-tab-table", id=4):
|
332 |
+
with gr.Column():
|
333 |
+
with gr.Accordion(
|
334 |
+
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
|
335 |
+
open=False,
|
336 |
+
):
|
337 |
+
with gr.Row():
|
338 |
+
finished_eval_table = gr.components.Dataframe(
|
339 |
+
value=finished_eval_queue_df,
|
340 |
+
headers=EVAL_COLS,
|
341 |
+
datatype=EVAL_TYPES,
|
342 |
+
row_count=5,
|
343 |
+
)
|
344 |
+
with gr.Accordion(
|
345 |
+
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
|
346 |
+
open=False,
|
347 |
+
):
|
348 |
+
with gr.Row():
|
349 |
+
running_eval_table = gr.components.Dataframe(
|
350 |
+
value=running_eval_queue_df,
|
351 |
+
headers=EVAL_COLS,
|
352 |
+
datatype=EVAL_TYPES,
|
353 |
+
row_count=5,
|
354 |
+
)
|
355 |
+
|
356 |
+
with gr.Accordion(
|
357 |
+
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
|
358 |
+
open=False,
|
359 |
+
):
|
360 |
+
with gr.Row():
|
361 |
+
pending_eval_table = gr.components.Dataframe(
|
362 |
+
value=pending_eval_queue_df,
|
363 |
+
headers=EVAL_COLS,
|
364 |
+
datatype=EVAL_TYPES,
|
365 |
+
row_count=5,
|
366 |
+
)
|
367 |
+
|
368 |
with gr.Row():
|
369 |
with gr.Accordion("π Citation", open=False):
|
370 |
citation_button = gr.Textbox(
|
|
|
377 |
|
378 |
scheduler = BackgroundScheduler()
|
379 |
scheduler.add_job(restart_space, "interval", seconds=1800)
|
380 |
+
scheduler.add_job(launch_backend, "interval", seconds=100)
|
381 |
scheduler.start()
|
382 |
+
demo.queue(default_concurrency_limit=40).launch()
|
src/about.py
CHANGED
@@ -15,8 +15,9 @@ class Task:
|
|
15 |
class Tasks(Enum):
|
16 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
17 |
task0 = Task("toxigen", "acc", "Toxicity (lower is better)", cite="_ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection._ Hartvigsen et al., ACL 2022.")
|
18 |
-
task1 = Task("truthfulqa_gen", "
|
19 |
-
|
|
|
20 |
#task2 = Task("anli_r1", "acc", "ANLI", cite="_Adversarial NLI: A New Benchmark for Natural Language Understanding._ Nie et al., ACL 2020.")
|
21 |
#task3 = Task("logiqa", "acc_norm", "LogiQA", cite="_LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning_. Liu et al., IJCAI 2020.")
|
22 |
|
@@ -36,9 +37,9 @@ LLM_BENCHMARKS_TEXT = f"""
|
|
36 |
## How it works
|
37 |
|
38 |
## Reproducibility
|
39 |
-
To reproduce the toxicity results, here is the command you can run:
|
40 |
|
41 |
-
```python main.py --model=hf-causal-experimental --model_args="pretrained=<your_model>,use_accelerate=True" --tasks
|
42 |
|
43 |
"""
|
44 |
|
@@ -69,7 +70,7 @@ When we add extra information about models to the leaderboard, it will be automa
|
|
69 |
## In case of model failure
|
70 |
If your model is displayed in the `FAILED` category, its execution stopped.
|
71 |
Make sure you have followed the above steps first.
|
72 |
-
If everything is done, check you can launch the EleutherAIHarness on your model locally
|
73 |
"""
|
74 |
|
75 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
|
|
15 |
class Tasks(Enum):
|
16 |
# task_key in the json file, metric_key in the json file, name to display in the leaderboard
|
17 |
task0 = Task("toxigen", "acc", "Toxicity (lower is better)", cite="_ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and Implicit Hate Speech Detection._ Hartvigsen et al., ACL 2022.")
|
18 |
+
task1 = Task("truthfulqa_gen", "bleurt_acc", "Truthful QA", cite="_TruthfulQA: Measuring How Models Mimic Human Falsehoods._ Lin et al., ACL 2022.")
|
19 |
+
# https://aclanthology.org/2020.emnlp-main.154/
|
20 |
+
task2 = Task("crows_pairs_english", "pct_stereotype", "CrowS-Pairs English", cite="_CrowS-Pairs: A Challenge Dataset for Measuring Social Biases in Masked Language Models._ Nangia et al., EMNLP 2020.")
|
21 |
#task2 = Task("anli_r1", "acc", "ANLI", cite="_Adversarial NLI: A New Benchmark for Natural Language Understanding._ Nie et al., ACL 2020.")
|
22 |
#task3 = Task("logiqa", "acc_norm", "LogiQA", cite="_LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning_. Liu et al., IJCAI 2020.")
|
23 |
|
|
|
37 |
## How it works
|
38 |
|
39 |
## Reproducibility
|
40 |
+
To reproduce the toxicity results, here is the command you can run using [this version](https://github.com/EleutherAI/lm-evaluation-harness/tree/b281b0921b636bc36ad05c0b0b0763bd6dd43463) of the EleutherAI LM Evaluation Harness:
|
41 |
|
42 |
+
```python main.py --model=hf-causal-experimental --model_args="pretrained=<your_model>,use_accelerate=True" --tasks=<task> --batch_size=1 --output_path=<output_path>```
|
43 |
|
44 |
"""
|
45 |
|
|
|
70 |
## In case of model failure
|
71 |
If your model is displayed in the `FAILED` category, its execution stopped.
|
72 |
Make sure you have followed the above steps first.
|
73 |
+
If everything is done, check you can launch the EleutherAIHarness on your model locally. See About tab for exact command.
|
74 |
"""
|
75 |
|
76 |
CITATION_BUTTON_LABEL = "Copy the following snippet to cite these results"
|
src/envs.py
CHANGED
@@ -20,11 +20,11 @@ LIMIT = None # 20
|
|
20 |
# Define some input/output variables.
|
21 |
# Don't forget to create a results and requests Dataset for your org
|
22 |
# Leaderboard Space
|
23 |
-
REPO_ID = f"{OWNER}/leaderboard"
|
24 |
# Leaderboard input Dataset
|
25 |
-
QUEUE_REPO = f"{OWNER}/requests"
|
26 |
# Leaderboard output Dataset
|
27 |
-
RESULTS_REPO = f"{OWNER}/results"
|
28 |
|
29 |
# If you setup a cache, set HF_HOME.
|
30 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
|
|
20 |
# Define some input/output variables.
|
21 |
# Don't forget to create a results and requests Dataset for your org
|
22 |
# Leaderboard Space
|
23 |
+
REPO_ID = f"{OWNER}/leaderboard-backend"
|
24 |
# Leaderboard input Dataset
|
25 |
+
QUEUE_REPO = f"{OWNER}/requests-tmp"
|
26 |
# Leaderboard output Dataset
|
27 |
+
RESULTS_REPO = f"{OWNER}/results-tmp"
|
28 |
|
29 |
# If you setup a cache, set HF_HOME.
|
30 |
CACHE_PATH=os.getenv("HF_HOME", ".")
|
src/leaderboard/read_evals.py
CHANGED
@@ -71,7 +71,7 @@ class EvalResult:
|
|
71 |
results = {}
|
72 |
for task in Tasks:
|
73 |
print("Looking at task:")
|
74 |
-
print(task)
|
75 |
try:
|
76 |
task = task.value
|
77 |
except Exception as e:
|
@@ -169,7 +169,7 @@ def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResu
|
|
169 |
model_result_filepaths = []
|
170 |
|
171 |
print("Getting raw eval results from:")
|
172 |
-
print(
|
173 |
for root, _, files in os.walk(results_path):
|
174 |
# We should only have json files in model results
|
175 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|
|
|
71 |
results = {}
|
72 |
for task in Tasks:
|
73 |
print("Looking at task:")
|
74 |
+
print(task.value)
|
75 |
try:
|
76 |
task = task.value
|
77 |
except Exception as e:
|
|
|
169 |
model_result_filepaths = []
|
170 |
|
171 |
print("Getting raw eval results from:")
|
172 |
+
print(results_path)
|
173 |
for root, _, files in os.walk(results_path):
|
174 |
# We should only have json files in model results
|
175 |
if len(files) == 0 or any([not f.endswith(".json") for f in files]):
|