Spaces:
Sleeping
Sleeping
import os | |
import pandas as pd | |
from pandas import DataFrame | |
from huggingface_hub import get_collection, add_collection_item, delete_collection_item | |
from huggingface_hub.utils._errors import HfHubHTTPError | |
from src.display_models.model_metadata_type import ModelType | |
from src.display_models.utils import AutoEvalColumn | |
H4_TOKEN = os.environ.get("H4_TOKEN", None) | |
path_to_collection = "HuggingFaceH4/current-best-models-of-the-open-llm-leaderboard-652d64cf619fc62beef5c2a3" | |
intervals = { | |
"1B": pd.Interval(0, 1.5, closed="right"), | |
"3B": pd.Interval(2.5, 3.5, closed="neither"), | |
"7B": pd.Interval(6, 8, closed="neither"), | |
"13B": pd.Interval(10, 14, closed="neither"), | |
"30B":pd.Interval(25, 35, closed="neither"), | |
"65B": pd.Interval(60, 70, closed="neither"), | |
} | |
def update_collections(df: DataFrame): | |
"""This function updates the Open LLM Leaderboard model collection with the latest best models for | |
each size category and type. | |
""" | |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
cur_best_models = [] | |
for type in ModelType: | |
if type.value.name == "": continue | |
for size in intervals: | |
# We filter the df to gather the relevant models | |
type_emoji = [t[0] for t in type.value.symbol] | |
filtered_df = df[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
numeric_interval = pd.IntervalIndex([intervals[size]]) | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
filtered_df = filtered_df.loc[mask] | |
best_models = list(filtered_df.sort_values(AutoEvalColumn.average.name, ascending=False)[AutoEvalColumn.dummy.name]) | |
print(type.value.symbol, size, best_models[:10]) | |
# We add them one by one to the leaderboard | |
for model in best_models: | |
# We can use collection = get_collection to grab the id of the last item, then place it where we want using update_collection but it's costly... | |
# We could also remove exists_ok to update the note to include the date of apparition of the model for ex. | |
try: | |
add_collection_item( | |
path_to_collection, | |
item_id=model, | |
item_type="model", | |
exists_ok=True, | |
note=f"Best {type.to_str(' ')} model of around {size} on the leaderboard today!", | |
token=H4_TOKEN | |
) | |
cur_best_models.append(model) | |
break | |
except HfHubHTTPError: | |
continue | |
collection = get_collection(path_to_collection, token=H4_TOKEN) | |
for item in collection.items: | |
if item.item_id not in cur_best_models: | |
delete_collection_item(collection_slug=path_to_collection, item_object_id=item.item_object_id, token=H4_TOKEN) | |