from __future__ import print_function from src.misc.config import cfg, cfg_from_file from src.dataset import TextDataset from src.trainer import condGANTrainer as trainer import time import random import pprint import numpy as np import torch import torchvision.transforms as transforms from pathlib import Path import streamlit as st def gen_example(wordtoix, algo, text): """generate images from example sentences""" from nltk.tokenize import RegexpTokenizer data_dic = {} captions = [] cap_lens = [] sent = text.replace("\ufffd\ufffd", " ") tokenizer = RegexpTokenizer(r"\w+") tokens = tokenizer.tokenize(sent.lower()) rev = [] for t in tokens: t = t.encode("ascii", "ignore").decode("ascii") if len(t) > 0 and t in wordtoix: rev.append(wordtoix[t]) captions.append(rev) cap_lens.append(len(rev)) max_len = np.max(cap_lens) sorted_indices = np.argsort(cap_lens)[::-1] cap_lens = np.asarray(cap_lens) cap_lens = cap_lens[sorted_indices] cap_array = np.zeros((len(captions), max_len), dtype="int64") for i in range(len(captions)): idx = sorted_indices[i] cap = captions[idx] c_len = len(cap) cap_array[i, :c_len] = cap name = "output" key = name[(name.rfind("/") + 1) :] data_dic[key] = [cap_array, cap_lens, sorted_indices] algo.gen_example(data_dic) # streamlit function def center_element(type, text=None, img_path=None): """ Function to center a streamlit element (text, image, etc) """ if type == "image": col1, col2, col3 = st.columns([1, 2, 1]) elif type == "text" or type == "heading": col1, col2, col3 = st.columns([1, 6, 1]) elif type == "subheading": col1, col2, col3 = st.columns([1, 2, 1]) elif type == "title": col1, col2, col3 = st.columns([1, 8, 1]) with col1: st.write("") with col2: if type == "heading": st.header(text) elif type == "title": st.title(text) elif type == "image": st.image(img_path) elif type == "text": st.write(text) elif type == "subheading": st.subheader(text) # else: # raise Exception("Unsupported input type") with col3: st.write("") def demo_gan(): cfg_from_file("eval_bird.yml") # print("Using config:") # pprint.pprint(cfg) cfg.CUDA = False manualSeed = 100 random.seed(manualSeed) np.random.seed(manualSeed) torch.manual_seed(manualSeed) output_dir = "output/" split_dir = "test" bshuffle = True imsize = cfg.TREE.BASE_SIZE * (2 ** (cfg.TREE.BRANCH_NUM - 1)) image_transform = transforms.Compose( [ transforms.Resize(int(imsize * 76 / 64)), transforms.RandomCrop(imsize), transforms.RandomHorizontalFlip(), ] ) st.cache(func=TextDataset, persist=True,ttl=10000) dataset = TextDataset( cfg.DATA_DIR, split_dir, base_size=cfg.TREE.BASE_SIZE, transform=image_transform ) assert dataset dataloader = torch.utils.data.DataLoader( dataset, batch_size=cfg.TRAIN.BATCH_SIZE, drop_last=True, shuffle=bshuffle, num_workers=int(cfg.WORKERS), ) # Define models and go to train/evaluate st.cache( func=trainer, persist=True, suppress_st_warning=True,ttl=10000 ) algo = trainer(output_dir, dataloader, dataset.n_words, dataset.ixtoword) st.title("Text To Image Generator ") st.subheader("Enter the description of the bird in the text box you like !!!") st.write( "**Example**: A yellow bird with red crown, black short beak and long tail" ) st.markdown("**PS**: The synthesized birds might not even exist on earth ") st.markdown("#") user_input = st.text_input("Write the bird description below") st.markdown("---") if user_input: start_t = time.time() # generate images for customized captions gen_example(dataset.wordtoix, algo, text=user_input) end_t = time.time() print("Total time for training:", end_t - start_t) st.write(f"**Your input**: {user_input}") center_element(type="subheading", text="AttnGAN synthesized bird") st.text("") center_element( type="image", img_path="models/bird_AttnGAN2/output/0_s_0_g2.png" ) center_element(type="subheading", text="The attention given for each word") st.image("models/bird_AttnGAN2/output/0_s_0_a1.png") st.markdown("---") with st.expander("Click to see the first stage images"): st.write("First stage image") st.image("models/bird_AttnGAN2/output/0_s_0_g1.png") st.write("First stage attention") st.image("models/bird_AttnGAN2/output/0_s_0_a0.png") def attngan_explained(): # center_element(type="heading", text="AttnGAN: Fine-Grained Text To Image Generation with Attentional Generative Adverserial Networks") st.header( "**AttnGAN**: Fine-Grained Text To Image Generation with Attentional Generative Adverserial Networks" ) from attngan_explanation import attngan_explanation attngan_explanation()