import json import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModel, BertForSequenceClassification, AlbertForSequenceClassification, DebertaForSequenceClassification, AutoModelForSequenceClassification, RobertaForSequenceClassification from peft.auto import AutoPeftModelForSequenceClassification from tensorboard.backend.event_processing import event_accumulator from peft import PeftModel from huggingface_hub import hf_hub_download import plotly.express as px import pandas as pd # Parse sentiment analysis pipeline results def parse_pipe_sa(pipe_out_text: str): output_list = list(pipe_out_text) pipe_label = output_list[0]['label'] pipe_score = float(output_list[0]['score'])*100 parsed_prediction = 'NULL' if pipe_label == 'NEGATIVE' or pipe_label == 'LABEL_0': parsed_prediction = f'This model thinks the sentiment is NEGATIVE. \nConfidence score of {pipe_score:.3f}%' elif pipe_label == 'POSITIVE' or pipe_label == 'LABEL_1': parsed_prediction = f'This model thinks the sentiment is POSITIVE. \nConfidence score of {pipe_score:.3f}%' return parsed_prediction # Parse sentiment NLI pipeline results def parse_pipe_nli(pipe_out_text: str): output_list = pipe_out_text pipe_label = output_list['label'] pipe_score = float(output_list['score'])*100 parsed_prediction = 'NULL' if pipe_label == 'NEGATIVE' or pipe_label == 'LABEL_0': parsed_prediction = f'This model thinks the clauses CONFIRM each other. \nConfidence score of {pipe_score:.3f}' elif pipe_label == 'POSITIVE' or pipe_label == 'LABEL_1': parsed_prediction = f'This model thinks the clauses are Neutral. \nConfidence score of {pipe_score:.3f}' elif pipe_label == 'POSITIVE' or pipe_label == 'LABEL_2': parsed_prediction = f'This model thinks the clauses CONTRADICT each other. \nConfidence score of {pipe_score:.3f}' return parsed_prediction # Parse sentiment STS pipeline results def parse_pipe_sts(pipe_out_text: str): output_list = pipe_out_text pipe_label = output_list['label'] pipe_score = float(output_list['score'])*100 parsed_prediction = 'NULL' if pipe_label == 'NO SIMILARITY' or pipe_label == 'LABEL_0': parsed_prediction = f'This model thinks the clauses have NO similarity. \nConfidence score of {pipe_score:.3f}%' elif pipe_label == 'LITTLE SIMILARITY' or pipe_label == 'LABEL_1': parsed_prediction = f'This model thinks the clauses have LITTLE similarity. \nConfidence score of {pipe_score:.3f}%' elif pipe_label == 'MEDIUM OR HIGHER SIMILARITY' or pipe_label == 'LABEL_2': parsed_prediction = f'This model thinks the clauses have MEDIUM to HIGH similarity. \nConfidence score of {pipe_score:.3f}%' return parsed_prediction #pretty sure this can be removed loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA") #tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased") tokenizer1 = AutoTokenizer.from_pretrained("albert-base-v2") tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall") # Handle calls to DistilBERT------------------------------------------ base_model = BertForSequenceClassification.from_pretrained("bert-base-uncased") peft_model_id = "Intradiction/BERT-SA-LORA" model = PeftModel.from_pretrained(model=base_model, model_id=peft_model_id) sa_merged_model = model.merge_and_unload() bbu_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") distilBERTUntrained_pipe = pipeline("sentiment-analysis", model="bert-base-uncased") distilBERTnoLORA_pipe = pipeline(model="Intradiction/text_classification_NoLORA") SentimentAnalysis_LORA_pipe = pipeline("sentiment-analysis", model=sa_merged_model, tokenizer=bbu_tokenizer) #text class models def distilBERTnoLORA_fn(text): return parse_pipe_sa(distilBERTnoLORA_pipe(text)) def distilBERTwithLORA_fn(text): return parse_pipe_sa(SentimentAnalysis_LORA_pipe(text)) def distilBERTUntrained_fn(text): return parse_pipe_sa(distilBERTUntrained_pipe(text)) # Handle calls to ALBERT--------------------------------------------- base_model1 = AlbertForSequenceClassification.from_pretrained("Alireza1044/albert-base-v2-mnli") peft_model_id1 = "m4faisal/NLI-Lora-Fine-Tuning-10K-ALBERT" model1 = PeftModel.from_pretrained(model=base_model1, model_id=peft_model_id1) sa_merged_model1 = model1.merge_and_unload() bbu_tokenizer1 = AutoTokenizer.from_pretrained("Alireza1044/albert-base-v2-mnli") ALbertUntrained_pipe = pipeline("text-classification", model="Alireza1044/albert-base-v2-mnli") AlbertnoLORA_pipe = pipeline(model="m4faisal/NLI-Conventional-Fine-Tuning") AlbertwithLORA_pipe = pipeline("text-classification",model=sa_merged_model1, tokenizer=bbu_tokenizer1) #NLI models def AlbertnoLORA_fn(text1, text2): return parse_pipe_nli(AlbertnoLORA_pipe({'text': text1, 'text_pair': text2})) def AlbertwithLORA_fn(text1, text2): return parse_pipe_nli(AlbertwithLORA_pipe({'text': text1, 'text_pair': text2})) def AlbertUntrained_fn(text1, text2): return parse_pipe_nli(ALbertUntrained_pipe({'text': text1, 'text_pair': text2})) # Handle calls to Deberta-------------------------------------------- base_model2 = RobertaForSequenceClassification.from_pretrained("FacebookAI/roberta-base", num_labels=3) peft_model_id2 = "rajevan123/STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-137-with-higher-r-mid" model2 = PeftModel.from_pretrained(model=base_model2, model_id=peft_model_id2) sa_merged_model2 = model2.merge_and_unload() bbu_tokenizer2 = AutoTokenizer.from_pretrained("FacebookAI/roberta-base") DebertaUntrained_pipe = pipeline("text-classification", model="FacebookAI/roberta-base") DebertanoLORA_pipe = pipeline(model="rajevan123/STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-137") DebertawithLORA_pipe = pipeline("text-classification",model=sa_merged_model2, tokenizer=bbu_tokenizer2) #STS models def DebertanoLORA_fn(text1, text2): return parse_pipe_sts(DebertanoLORA_pipe({'text': text1, 'text_pair': text2})) def DebertawithLORA_fn(text1, text2): return parse_pipe_sts(DebertawithLORA_pipe({'text': text1, 'text_pair': text2})) #return ("working2") def DebertaUntrained_fn(text1, text2): return parse_pipe_sts(DebertaUntrained_pipe({'text': text1, 'text_pair': text2})) #helper functions ------------------------------------------------------ #Text metrics for Untrained models def displayMetricStatsUntrained(): return "No statistics to display for untrained models" def displayMetricStatsText(): #file_name = 'events.out.tfevents.distilbertSA-conventional.0' file_name = hf_hub_download(repo_id="Intradiction/text_classification_NoLORA", filename="runs/Nov28_21-52-51_81dc5cd53c46/events.out.tfevents.1701208378.81dc5cd53c46.1934.0") event_acc = event_accumulator.EventAccumulator(file_name, size_guidance={ event_accumulator.COMPRESSED_HISTOGRAMS: 500, event_accumulator.IMAGES: 4, event_accumulator.AUDIO: 4, event_accumulator.SCALARS: 0, event_accumulator.HISTOGRAMS: 1, }) event_acc.Reload() accuracy_data = event_acc.Scalars('eval/accuracy') loss_data = event_acc.Scalars('eval/loss') #code to pull time data (very inaccurate) # time_data = event_acc.Scalars('eval/runtime') # Ttime = 0 # for time in time_data: # Ttime+=time.value # Ttime = str(round(Ttime/60,2)) # print(Ttime) metrics = ("Active Training Time: 27.95 mins \n\n") for i in range(0, len(loss_data)): metrics = metrics + 'Epoch Number: ' + str(i) + '\n' metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n' metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n' return metrics def displayMetricStatsTextTCLora(): #file_name = 'events.out.tfevents.distilbertSA-LORA.0' file_name = hf_hub_download(repo_id="Intradiction/BERT-SA-LORA", filename="runs/Mar16_18-10-29_INTRADICTION/events.out.tfevents.1710627034.INTRADICTION.31644.0") event_acc = event_accumulator.EventAccumulator(file_name, size_guidance={ event_accumulator.COMPRESSED_HISTOGRAMS: 500, event_accumulator.IMAGES: 4, event_accumulator.AUDIO: 4, event_accumulator.SCALARS: 0, event_accumulator.HISTOGRAMS: 1, }) event_acc.Reload() accuracy_data = event_acc.Scalars('eval/accuracy') loss_data = event_acc.Scalars('eval/loss') #code to pull time data (very inaccurate) # time_data = event_acc.Scalars('eval/runtime') # Ttime = 0 # for time in time_data: # Ttime+=time.value # Ttime = str(round(Ttime/60,2)) # print(event_acc.Tags()) metrics = ("Active Training Time: 15.58 mins \n\n") for i in range(0, len(loss_data)): metrics = metrics + 'Epoch Number: ' + str(i) + '\n' metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n' metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n' return metrics def displayMetricStatsTextNLINoLora(): #file_name = 'events.out.tfevents.NLI-Conventional.1' file_name = hf_hub_download(repo_id="m4faisal/NLI-Conventional-Fine-Tuning", filename="runs/Mar20_23-18-22_a7cbf6b28344/events.out.tfevents.1710976706.a7cbf6b28344.5071.0") event_acc = event_accumulator.EventAccumulator(file_name, size_guidance={ event_accumulator.COMPRESSED_HISTOGRAMS: 500, event_accumulator.IMAGES: 4, event_accumulator.AUDIO: 4, event_accumulator.SCALARS: 0, event_accumulator.HISTOGRAMS: 1, }) event_acc.Reload() accuracy_data = event_acc.Scalars('eval/accuracy') loss_data = event_acc.Scalars('eval/loss') metrics = "Active Training Time: 6.74 mins \n\n" for i in range(0, len(loss_data)): metrics = metrics + 'Epoch Number: ' + str(i) + '\n' metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n' metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n' return metrics def displayMetricStatsTextNLILora(): #file_name = 'events.out.tfevents.NLI-Lora.0' file_name = hf_hub_download(repo_id="m4faisal/NLI-Lora-Fine-Tuning-10K", filename="runs/Mar20_18-07-52_87caf1b1d04f/events.out.tfevents.1710958080.87caf1b1d04f.7531.0") event_acc = event_accumulator.EventAccumulator(file_name, size_guidance={ event_accumulator.COMPRESSED_HISTOGRAMS: 500, event_accumulator.IMAGES: 4, event_accumulator.AUDIO: 4, event_accumulator.SCALARS: 0, event_accumulator.HISTOGRAMS: 1, }) event_acc.Reload() accuracy_data = event_acc.Scalars('eval/accuracy') loss_data = event_acc.Scalars('eval/loss') metrics = "Active Training Time: 15.04 mins \n\n" for i in range(0, len(loss_data)): metrics = metrics + 'Epoch Number: ' + str(i) + '\n' metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n' metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n' return metrics def displayMetricStatsTextSTSLora(): #file_name = 'events.out.tfevents.STS-Lora.2' file_name = hf_hub_download(repo_id="rajevan123/STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-137-with-higher-r-mid", filename="runs/Mar28_19-51-13_fcdc58e67935/events.out.tfevents.1711655476.fcdc58e67935.625.0") event_acc = event_accumulator.EventAccumulator(file_name, size_guidance={ event_accumulator.COMPRESSED_HISTOGRAMS: 500, event_accumulator.IMAGES: 4, event_accumulator.AUDIO: 4, event_accumulator.SCALARS: 0, event_accumulator.HISTOGRAMS: 1, }) event_acc.Reload() accuracy_data = event_acc.Scalars('eval/accuracy') loss_data = event_acc.Scalars('eval/loss') metrics = "Active Training Time: 41.07 mins \n\n" for i in range(0, len(loss_data)): metrics = metrics + 'Epoch Number: ' + str(i) + '\n' metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n' metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n' return metrics def displayMetricStatsTextSTSNoLora(): #file_name = 'events.out.tfevents.STS-Conventional.0' file_name = hf_hub_download(repo_id="rajevan123/STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-137", filename="runs/Mar31_15-13-28_585e70ba99a4/events.out.tfevents.1711898010.585e70ba99a4.247.0") event_acc = event_accumulator.EventAccumulator(file_name, size_guidance={ event_accumulator.COMPRESSED_HISTOGRAMS: 500, event_accumulator.IMAGES: 4, event_accumulator.AUDIO: 4, event_accumulator.SCALARS: 0, event_accumulator.HISTOGRAMS: 1, }) event_acc.Reload() accuracy_data = event_acc.Scalars('eval/accuracy') loss_data = event_acc.Scalars('eval/loss') metrics = "Active Training Time: 23.96 mins \n\n" for i in range(0, len(loss_data)): metrics = metrics + 'Epoch Number: ' + str(i) + '\n' metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n' metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n' return metrics def displayMetricStatsGraph(): file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0' event_acc = event_accumulator.EventAccumulator(file_name, size_guidance={ event_accumulator.COMPRESSED_HISTOGRAMS: 500, event_accumulator.IMAGES: 4, event_accumulator.AUDIO: 4, event_accumulator.SCALARS: 0, event_accumulator.HISTOGRAMS: 1, }) event_acc.Reload() accuracy_data = event_acc.Scalars('eval/accuracy') loss_data = event_acc.Scalars("eval/loss") epoch = [] metric = [] group = [] for i in range(0, len(accuracy_data)): epoch.append(str(i)) metric.append(accuracy_data[i].value) group.append('G1') for j in range(0, len(loss_data)): epoch.append(str(j)) metric.append(loss_data[j].value) group.append('G2') data = pd.DataFrame() data['Epoch'] = epoch data['Metric'] = metric data['Group'] = group #generate the actual plot return px.line(data, x = 'Epoch', y = 'Metric', color=group, markers = True) # #placeholder # def chat1(message,history): # history = history or [] # message = message.lower() # if message.startswith("how many"): # response = ("1 to 10") # else: # response = ("whatever man whatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever man") # history.append((message, response)) # return history, history with gr.Blocks( title="", ) as demo: gr.Markdown("""
""") with gr.Tab("Text Classification"): with gr.Row(): gr.Markdown("Model: Bert Base Uncased
Number of Parameters: 110 Million
Dataset: IMDB Movie review dataset
NLP Task: Text Classification
Text classification is an NLP task that focuses on automatically ascribing a predefined category or labels to an input prompt. In this demonstration the Tiny Bert model has been used to classify the text on the basis of sentiment analysis, where the labels (negative and positive) will indicate the emotional state expressed by the input prompt.
The models were trained on the IMDB dataset which includes over 100k sentiment pairs pulled from IMDB movie reviews.
Results:
It can be seen that the LoRA fine tuned model performs comparably to the conventionally trained model. The difference arises in the training time where the conventional model takes almost 30 mins to train through 2 epochs the LoRA model takes half the time to train through 4 epochs.
Model: Albert
Number of Parameters: 11 Million
Dataset: Stanford Natural Language Inference Dataset
NLP Task: Natural Language Inferencing
Natural Language Inference (NLI) which can also be referred to as Textual Entailment is an NLP task with the objective of determining the relationship between two pieces of text. Ideally to determine logical inference (i.e. If the pairs contradict or confirm one another).
The models were trained on the Stanford Natural Language Inference Dataset which is a collection of 570k human-written English sentence pairs manually labeled for balanced classification, listed as positive, negative or neutral.
Results
While the time to train for the conventional model may be lower if we look closer at the number of epochs the models we trained over the LoRA model has a time per epoch of 1.5 mins vs the conventional's 3mins per epoch, showing significant improvement.
Model: Roberta Base
Number of Parameters: 125 Million
Dataset: Semantic Text Similarity Benchmark
NLP Task: Semantic Text Similarity
Semantic text similarity measures the closeness in meaning of two pieces of text despite differences in their wording or structure. This task involves two input prompts which can be sentences, phrases or entire documents and assessing them for similarity.
This implementation uses the Roberta base model and training was performed on the semantic text similarity benchmark dataset which contains over 86k semantic pairs and their scores.
Results
We can see that for a comparable result the LoRA trained model manages to train for 30 epochs in 14.5 mins vs the conventional models 24 mins displaying a 60% increase in efficiency.
Large Language Models (LLM) are complex natural language processing algorithms which can perform a multitude of tasks. These models outperform the average individual in many standardized tests, but they lack the ability to provide accurate results in specialized tasks. In the past, general purpose models have been fine tuned to provide domain-specific knowledge. However, as models become more complex, the number of parameters increases; just this year, we have witnessed an over 500x increase between GPT-3 and GPT-4, as such the computational cost of conventional fine tuning in some cases makes it prohibitive to do so. In this Engineering design project, we have been tasked to investigate fine tuning strategies to provide a more efficient solution to train LLMs on a singular GPU.
""") with gr.Row(): with gr.Column(scale=2): gr.Markdown("""In the world of deep learning, Low-Rank adaptation (LoRA) stands out as an efficient strategy for fine tuning Large Language models. Being a subset of parameter efficient fine tuning (PEFT), LoRA is a targeted fine tuning process, which minimizes the necessity for retraining the entire model and substantially reduces computational costs.
The fundamental property that LoRA is built on is the assumption that the large matrices which compose the layers of modern LLM models have an intrinsically low rank. The rank of a matrix refers to the number of linearly independent variables, and this is important because this means that we can decompose layers into much smaller matrices reducing the number of training parameters without losing information. A very simple example of this would be to imagine a 100 x 100 matrix with a rank of 2 which would have a 10 '000 trainable parameters. Should we decompose this matrix following the theorem we can create two constituent matrixes which can be multiplied together to restore the original. The decomposition matrices would be of sizes 100 x 2 and 2 x 100 resulting in only 400 trainable parameters, a 96% decrease. As the number of parameters are directly correlated to the amount of time required for training this is a massive difference.
""") with gr.Column(scale=1): gr.Markdown("""