File size: 30,493 Bytes
494624c
0d23076
c84b4ae
9a7561b
dc92a64
b0abe15
56ab5a8
dc92a64
 
9e0ff12
494624c
 
 
 
f386160
b0abe15
494624c
 
 
f386160
494624c
f386160
494624c
 
b0abe15
f386160
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a5b288
 
 
b0abe15
d0c2cdc
8077ebf
dc92a64
3a5b288
 
 
 
 
 
8077ebf
9e0ff12
3a5b288
9e0ff12
8077ebf
9e0ff12
494624c
0d23076
43d5145
494624c
43d5145
8077ebf
494624c
8077ebf
 
dc92a64
e103045
 
 
 
 
 
 
 
 
8077ebf
 
 
f386160
8077ebf
 
f386160
8077ebf
 
f386160
8077ebf
 
dc92a64
c84b4ae
 
0af75b9
 
c84b4ae
e103045
c00c585
 
0af75b9
8077ebf
 
 
f386160
8077ebf
 
f386160
0af75b9
8077ebf
 
f386160
8077ebf
dc92a64
 
 
 
 
 
 
77b5fba
 
de93a91
 
 
 
 
 
 
 
 
 
 
 
e103045
 
 
 
 
 
 
 
 
250f9f3
de93a91
 
 
 
 
 
 
 
56ab5a8
 
de93a91
 
 
 
 
 
 
 
 
 
 
 
e103045
 
 
 
 
 
 
 
 
250f9f3
de93a91
 
 
 
 
 
 
 
77b5fba
e103045
dc92a64
 
 
 
 
 
 
 
 
 
 
 
250f9f3
dc92a64
 
 
 
 
 
 
de93a91
e103045
 
de93a91
 
 
 
 
 
 
 
 
 
 
 
250f9f3
de93a91
 
 
 
 
 
 
 
250f9f3
c84b4ae
de93a91
 
 
 
 
 
 
 
 
 
 
 
0af75b9
de93a91
 
 
 
 
 
 
77b5fba
c00c585
de93a91
 
 
 
 
 
 
 
 
 
 
 
250f9f3
de93a91
 
 
 
 
 
 
dc92a64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ffc18a3
 
61357d4
 
ffc18a3
61357d4
 
 
 
dc92a64
fe93989
 
61357d4
 
 
 
 
ffc18a3
9a7561b
61357d4
fe93989
f386160
 
5db0d3c
 
f386160
61357d4
5db0d3c
9a7561b
5db0d3c
 
dc92a64
77b5fba
 
5db0d3c
 
 
 
 
 
 
 
 
61357d4
9a7561b
5db0d3c
8077ebf
dc92a64
5db0d3c
 
494624c
0af75b9
5db0d3c
 
8077ebf
0af75b9
61357d4
8077ebf
 
 
dc92a64
 
77b5fba
61357d4
fe93989
61357d4
fe93989
61357d4
9a7561b
61357d4
fe93989
b3206d8
f386160
5db0d3c
f386160
 
61357d4
9a7561b
d0c2cdc
 
8077ebf
dc92a64
250f9f3
f386160
5db0d3c
 
f386160
8077ebf
f386160
5db0d3c
d0c2cdc
 
 
 
 
f386160
8077ebf
f386160
d0c2cdc
 
5db0d3c
 
 
9a7561b
5db0d3c
8077ebf
dc92a64
61357d4
5db0d3c
8077ebf
0af75b9
5db0d3c
 
8077ebf
0af75b9
8077ebf
 
 
 
dc92a64
49d3c2c
 
dc92a64
61357d4
fe93989
61357d4
 
 
9a7561b
61357d4
fe93989
c00c585
f386160
b3206d8
5db0d3c
f386160
61357d4
9a7561b
d0c2cdc
 
8077ebf
dc92a64
77b5fba
c84b4ae
5db0d3c
 
8077ebf
 
 
5db0d3c
d0c2cdc
 
 
 
 
8077ebf
 
 
d0c2cdc
 
5db0d3c
 
61357d4
9a7561b
5db0d3c
8077ebf
dc92a64
5db0d3c
 
fe93989
0af75b9
5db0d3c
 
8077ebf
c84b4ae
8077ebf
 
 
 
dc92a64
de93a91
 
61357d4
3a5b288
8487cf1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d23076
 
9e0ff12
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import json
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModel, BertForSequenceClassification, AlbertForSequenceClassification, DebertaForSequenceClassification, AutoModelForSequenceClassification, RobertaForSequenceClassification
from peft.auto import AutoPeftModelForSequenceClassification
from tensorboard.backend.event_processing import event_accumulator
from peft import PeftModel
from huggingface_hub import hf_hub_download
import plotly.express as px
import pandas as pd

# Parse sentiment analysis pipeline results
def parse_pipe_sa(pipe_out_text: str):
    output_list = list(pipe_out_text)
    pipe_label = output_list[0]['label']
    pipe_score = float(output_list[0]['score'])*100

    parsed_prediction = 'NULL'

    if pipe_label == 'NEGATIVE' or pipe_label == 'LABEL_0':
        parsed_prediction = f'This model thinks the sentiment is NEGATIVE. \nConfidence score of {pipe_score:.3f}%'
    elif pipe_label == 'POSITIVE' or pipe_label == 'LABEL_1':
        parsed_prediction = f'This model thinks the sentiment is POSITIVE. \nConfidence score of {pipe_score:.3f}%'

    return parsed_prediction

# Parse sentiment NLI pipeline results
def parse_pipe_nli(pipe_out_text: str):
    output_list = pipe_out_text
    pipe_label = output_list['label']
    pipe_score = float(output_list['score'])*100

    parsed_prediction = 'NULL'

    if pipe_label == 'NEGATIVE' or pipe_label == 'LABEL_0':
        parsed_prediction = f'This model thinks the clauses CONFIRM each other. \nConfidence score of {pipe_score:.3f}'
    elif pipe_label == 'POSITIVE' or pipe_label == 'LABEL_1':
        parsed_prediction = f'This model thinks the clauses are Neutral. \nConfidence score of {pipe_score:.3f}'
    elif pipe_label == 'POSITIVE' or pipe_label == 'LABEL_2':
        parsed_prediction = f'This model thinks the clauses CONTRADICT each other. \nConfidence score of {pipe_score:.3f}'

    return parsed_prediction

# Parse sentiment STS pipeline results
def parse_pipe_sts(pipe_out_text: str):
    output_list = pipe_out_text
    pipe_label = output_list['label']
    pipe_score = float(output_list['score'])*100

    parsed_prediction = 'NULL'

    if pipe_label == 'NO SIMILARITY' or pipe_label == 'LABEL_0':
        parsed_prediction = f'This model thinks the clauses have NO similarity. \nConfidence score of {pipe_score:.3f}%'
    elif pipe_label == 'LITTLE SIMILARITY' or pipe_label == 'LABEL_1':
        parsed_prediction = f'This model thinks the clauses have LITTLE similarity. \nConfidence score of {pipe_score:.3f}%'
    elif pipe_label == 'MEDIUM OR HIGHER SIMILARITY' or pipe_label == 'LABEL_2':
        parsed_prediction = f'This model thinks the clauses have MEDIUM to HIGH similarity. \nConfidence score of {pipe_score:.3f}%'

    return parsed_prediction

#pretty sure this can be removed
loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
#tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
tokenizer1 = AutoTokenizer.from_pretrained("albert-base-v2")
tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")


# Handle calls to DistilBERT------------------------------------------
base_model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
peft_model_id = "Intradiction/BERT-SA-LORA"
model = PeftModel.from_pretrained(model=base_model, model_id=peft_model_id)
sa_merged_model = model.merge_and_unload()
bbu_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")

distilBERTUntrained_pipe = pipeline("sentiment-analysis", model="bert-base-uncased")
distilBERTnoLORA_pipe = pipeline(model="Intradiction/text_classification_NoLORA")
SentimentAnalysis_LORA_pipe = pipeline("sentiment-analysis", model=sa_merged_model, tokenizer=bbu_tokenizer)

#text class models 
def distilBERTnoLORA_fn(text):
    return parse_pipe_sa(distilBERTnoLORA_pipe(text))

def distilBERTwithLORA_fn(text):
    return parse_pipe_sa(SentimentAnalysis_LORA_pipe(text))

def distilBERTUntrained_fn(text):
    return parse_pipe_sa(distilBERTUntrained_pipe(text))


# Handle calls to ALBERT---------------------------------------------
base_model1 = AlbertForSequenceClassification.from_pretrained("Alireza1044/albert-base-v2-mnli")
peft_model_id1 = "m4faisal/NLI-Lora-Fine-Tuning-10K-ALBERT"
model1 = PeftModel.from_pretrained(model=base_model1, model_id=peft_model_id1)
sa_merged_model1 = model1.merge_and_unload()
bbu_tokenizer1 = AutoTokenizer.from_pretrained("Alireza1044/albert-base-v2-mnli")

ALbertUntrained_pipe = pipeline("text-classification", model="Alireza1044/albert-base-v2-mnli")
AlbertnoLORA_pipe = pipeline(model="m4faisal/NLI-Conventional-Fine-Tuning")
AlbertwithLORA_pipe = pipeline("text-classification",model=sa_merged_model1, tokenizer=bbu_tokenizer1)

#NLI models 
def AlbertnoLORA_fn(text1, text2):
    return parse_pipe_nli(AlbertnoLORA_pipe({'text': text1, 'text_pair': text2}))

def AlbertwithLORA_fn(text1, text2):
    return parse_pipe_nli(AlbertwithLORA_pipe({'text': text1, 'text_pair': text2}))

def AlbertUntrained_fn(text1, text2):
    return parse_pipe_nli(ALbertUntrained_pipe({'text': text1, 'text_pair': text2}))


# Handle calls to Deberta--------------------------------------------
base_model2 = RobertaForSequenceClassification.from_pretrained("FacebookAI/roberta-base", num_labels=3)
peft_model_id2 = "rajevan123/STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-137-with-higher-r-mid"
model2 = PeftModel.from_pretrained(model=base_model2, model_id=peft_model_id2)
sa_merged_model2 = model2.merge_and_unload()
bbu_tokenizer2 = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")

DebertaUntrained_pipe = pipeline("text-classification", model="FacebookAI/roberta-base")
DebertanoLORA_pipe = pipeline(model="rajevan123/STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-137")
DebertawithLORA_pipe = pipeline("text-classification",model=sa_merged_model2, tokenizer=bbu_tokenizer2)

#STS models
def DebertanoLORA_fn(text1, text2):
    return parse_pipe_sts(DebertanoLORA_pipe({'text': text1, 'text_pair': text2}))

def DebertawithLORA_fn(text1, text2):
    return parse_pipe_sts(DebertawithLORA_pipe({'text': text1, 'text_pair': text2}))
    #return ("working2")

def DebertaUntrained_fn(text1, text2):
    return parse_pipe_sts(DebertaUntrained_pipe({'text': text1, 'text_pair': text2}))

#helper functions ------------------------------------------------------

#Text metrics for Untrained models
def displayMetricStatsUntrained():
    return "No statistics to display for untrained models"

def displayMetricStatsText():
    #file_name = 'events.out.tfevents.distilbertSA-conventional.0'
    file_name = hf_hub_download(repo_id="Intradiction/text_classification_NoLORA", filename="runs/Nov28_21-52-51_81dc5cd53c46/events.out.tfevents.1701208378.81dc5cd53c46.1934.0")
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')

    #code to pull time data (very inaccurate)
    # time_data = event_acc.Scalars('eval/runtime')
    # Ttime = 0 
    # for time in time_data:
    #     Ttime+=time.value
    # Ttime = str(round(Ttime/60,2))
    # print(Ttime)

    metrics = ("Active Training Time: 27.95 mins \n\n")
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics

def displayMetricStatsTextTCLora():
    #file_name = 'events.out.tfevents.distilbertSA-LORA.0'
    file_name = hf_hub_download(repo_id="Intradiction/BERT-SA-LORA", filename="runs/Mar16_18-10-29_INTRADICTION/events.out.tfevents.1710627034.INTRADICTION.31644.0")
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')
    
    #code to pull time data (very inaccurate)
    # time_data = event_acc.Scalars('eval/runtime')
    # Ttime = 0 
    # for time in time_data:
    #     Ttime+=time.value
    # Ttime = str(round(Ttime/60,2))
    # print(event_acc.Tags())

    metrics = ("Active Training Time: 15.58 mins \n\n")
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics

def displayMetricStatsTextNLINoLora():
    #file_name = 'events.out.tfevents.NLI-Conventional.1'
    file_name = hf_hub_download(repo_id="m4faisal/NLI-Conventional-Fine-Tuning", filename="runs/Mar20_23-18-22_a7cbf6b28344/events.out.tfevents.1710976706.a7cbf6b28344.5071.0")
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')
    metrics = "Active Training Time: 6.74 mins \n\n"
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics

def displayMetricStatsTextNLILora():
    #file_name = 'events.out.tfevents.NLI-Lora.0'
    file_name = hf_hub_download(repo_id="m4faisal/NLI-Lora-Fine-Tuning-10K", filename="runs/Mar20_18-07-52_87caf1b1d04f/events.out.tfevents.1710958080.87caf1b1d04f.7531.0")
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')
    metrics = "Active Training Time: 15.04 mins \n\n"
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics

def displayMetricStatsTextSTSLora():
    #file_name = 'events.out.tfevents.STS-Lora.2'
    file_name = hf_hub_download(repo_id="rajevan123/STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-137-with-higher-r-mid", filename="runs/Mar28_19-51-13_fcdc58e67935/events.out.tfevents.1711655476.fcdc58e67935.625.0")
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')
    metrics = "Active Training Time: 41.07 mins \n\n"
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics
def displayMetricStatsTextSTSNoLora():
    #file_name = 'events.out.tfevents.STS-Conventional.0'
    file_name = hf_hub_download(repo_id="rajevan123/STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-137", filename="runs/Mar31_15-13-28_585e70ba99a4/events.out.tfevents.1711898010.585e70ba99a4.247.0")
    event_acc = event_accumulator.EventAccumulator(file_name,
    size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
    event_acc.Reload()
    accuracy_data = event_acc.Scalars('eval/accuracy')
    loss_data = event_acc.Scalars('eval/loss')
    metrics = "Active Training Time: 23.96 mins \n\n"
    for i in range(0, len(loss_data)):
        metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
        metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
        metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
    
    return metrics

def displayMetricStatsGraph():
   file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
   event_acc = event_accumulator.EventAccumulator(file_name,
   size_guidance={
    event_accumulator.COMPRESSED_HISTOGRAMS: 500,
    event_accumulator.IMAGES: 4,
    event_accumulator.AUDIO: 4,
    event_accumulator.SCALARS: 0,
    event_accumulator.HISTOGRAMS: 1,
})
   
   event_acc.Reload()
   accuracy_data = event_acc.Scalars('eval/accuracy')
   loss_data = event_acc.Scalars("eval/loss")
   epoch = []
   metric = []
   group = []
   for i in range(0, len(accuracy_data)):
       epoch.append(str(i))
       metric.append(accuracy_data[i].value)
       group.append('G1')
   for j in range(0, len(loss_data)):
       epoch.append(str(j))
       metric.append(loss_data[j].value)
       group.append('G2')
   data = pd.DataFrame()
   data['Epoch'] = epoch
   data['Metric'] = metric
   data['Group'] = group

  #generate the actual plot
   return px.line(data, x = 'Epoch', y = 'Metric', color=group, markers = True)


# #placeholder
# def chat1(message,history):
#     history = history or []
#     message = message.lower()
#     if message.startswith("how many"):
#         response = ("1 to 10")
#     else:
#         response = ("whatever man whatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever man")
#     history.append((message, response))
#     return history, history


with gr.Blocks(
    title="",

) as demo:
    gr.Markdown("""
        <div style="overflow: hidden;color:#fff;display: flex;flex-direction: column;align-items: center; position: relative; width: 100%; height: 180px;background-size: cover; background-image: url(https://www.grssigns.co.uk/wp-content/uploads/web-Header-Background.jpg);">
            <img style="width: 130px;height: 60px;position: absolute;top:10px;left:10px" src="https://www.torontomu.ca/content/dam/tmumobile/images/TMU-Mobile-AppIcon.png"/>
            <span style="margin-top: 40px;font-size: 36px ;font-family:fantasy;">Efficient Fine Tuning Of Large Language Models</span>
            <span style="margin-top: 10px;font-size: 14px;">By: Rahul Adams, Greylyn Gao, Rajevan Logarajah & Mahir Faisal</span>
            <span style="margin-top: 5px;font-size: 14px;">Group Id: AR06 FLC: Alice Reuda</span>
        </div>
    """)
    with gr.Tab("Text Classification"):
        with gr.Row():
            gr.Markdown("<h1>Efficient Fine Tuning for Text Classification</h1>")
        with gr.Row():
            with gr.Column(variant="panel"):
                gr.Markdown("""
                            <h2>Specifications</h2>
                            <p><b>Model:</b> Bert Base Uncased <br>
                            <b>Number of Parameters:</b> 110 Million <br>
                            <b>Dataset:</b> IMDB Movie review dataset <br>
                            <b>NLP Task:</b> Text Classification</p>
                            <p>Text classification is an NLP task that focuses on automatically ascribing a predefined category or labels to an input prompt. In this demonstration the Tiny Bert model has been used to classify the text on the basis of sentiment analysis, where the labels (negative and positive) will indicate the emotional state expressed by the input prompt.<br><br>The models were trained on the IMDB dataset which includes over 100k sentiment pairs pulled from IMDB movie reviews.<br><br><b>Results:</b><br> It can be seen that the LoRA fine tuned model performs comparably to the conventionally trained model. The difference arises in the training time where the conventional model takes almost 30 mins to train through 2 epochs the LoRA model takes half the time to train through 4 epochs.</p>
                            """)
                
            with gr.Column(variant="panel"):
                inp = gr.Textbox(placeholder="Prompt",label= "Enter Query")
                btn = gr.Button("Run")
                btnTextClassStats = gr.Button("Display Training Metrics")
                btnTensorLinkTCNoLora = gr.Button(value="View Conventional Training Graphs", link="https://huggingface.co./Intradiction/text_classification_NoLORA/tensorboard")
                btnTensorLinkTCLora = gr.Button(value="View LoRA Training Graphs", link="https://huggingface.co./Intradiction/BERT-SA-LORA/tensorboard")
                gr.Examples(
                    [
                        "I thought this was a bit contrived",
                        "You would need to be a child to enjoy this",
                        "Drive more like Drive away",
                    ],
                    inp,
                    label="Try asking",
                )

            with gr.Column(scale=3):
                with gr.Row(variant="panel"):
                    TextClassOut =  gr.Textbox(label= "Untrained Base Model")
                    TextClassUntrained = gr.Textbox(label = "Training Informaiton")

                with gr.Row(variant="panel"):
                    TextClassOut1 = gr.Textbox(label="Conventionaly Trained Model")
                    TextClassNoLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 27.95 mins")

                with gr.Row(variant="panel"):
                    TextClassOut2 = gr.Textbox(label= "LoRA Fine Tuned Model")
                    TextClassLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 15.58 mins")

        btn.click(fn=distilBERTUntrained_fn, inputs=inp, outputs=TextClassOut)
        btn.click(fn=distilBERTnoLORA_fn, inputs=inp, outputs=TextClassOut1)
        btn.click(fn=distilBERTwithLORA_fn, inputs=inp, outputs=TextClassOut2)
        btnTextClassStats.click(fn=displayMetricStatsUntrained, outputs=TextClassUntrained)
        btnTextClassStats.click(fn=displayMetricStatsText, outputs=TextClassNoLoraStats)
        btnTextClassStats.click(fn=displayMetricStatsTextTCLora, outputs=TextClassLoraStats) 

    with gr.Tab("Natural Language Inferencing"):
         with gr.Row():
             gr.Markdown("<h1>Efficient Fine Tuning for Natural Language Inferencing</h1>")
         with gr.Row():
            with gr.Column(variant="panel"):
                gr.Markdown("""
                            <h2>Specifications</h2>
                            <p><b>Model:</b> Albert <br>
                            <b>Number of Parameters:</b> 11 Million <br>
                            <b>Dataset:</b> Stanford Natural Language Inference Dataset <br>
                            <b>NLP Task:</b> Natural Language Inferencing</p>
                            <p>Natural Language Inference (NLI) which can also be referred to as Textual Entailment is an NLP task with the objective of determining the relationship between two pieces of text. Ideally to determine logical inference (i.e. If the pairs contradict or confirm one another).<br><br>The models were trained on the Stanford Natural Language Inference Dataset which is a collection of 570k human-written English sentence pairs manually labeled for balanced classification, listed as positive, negative or neutral. <br><br><b>Results</b><br>While the time to train for the conventional model may be lower if we look closer at the number of epochs the models we trained over the LoRA model has a time per epoch of 1.5 mins vs the conventional's 3mins per epoch, showing significant improvement. </p>
                            """)
            with gr.Column(variant="panel"):
                nli_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
                nli_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
                nli_btn = gr.Button("Run")
                btnNLIStats = gr.Button("Display Training Metrics")
                btnTensorLinkNLICon = gr.Button(value="View Conventional Training Graphs", link="https://huggingface.co./m4faisal/NLI-Conventional-Fine-Tuning/tensorboard") 
                btnTensorLinkNLILora = gr.Button(value="View LoRA Training Graphs", link="https://huggingface.co./m4faisal/NLI-Lora-Fine-Tuning-10K/tensorboard")    
                gr.Examples(
                    [
                        "A man is awake",
                        "People like apples",
                        "A game with mutiple people playing",
                    ],
                    nli_p1,
                    label="Try asking",
                ) 
                gr.Examples(
                    [
                        "A man is sleeping",
                        "Apples are good",
                        "Some people are playing a game",
                    ],
                    nli_p2,
                    label="Try asking",
                ) 

            with gr.Column(scale=3):
                with gr.Row(variant="panel"):
                    NLIOut =  gr.Textbox(label= "Untrained Base Model")
                    NLIUntrained = gr.Textbox(label = "Training Informaiton")

                with gr.Row(variant="panel"):
                    NLIOut1 = gr.Textbox(label= "Conventionaly Trained Model")
                    NLINoLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 6.74 mins")

                with gr.Row(variant="panel"):
                    NLIOut2 = gr.Textbox(label= "LoRA Fine Tuned Model")
                    NLILoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 15.04 mins")
        
         nli_btn.click(fn=AlbertUntrained_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut)
         nli_btn.click(fn=AlbertnoLORA_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut1)
         nli_btn.click(fn=AlbertwithLORA_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut2)
         btnNLIStats.click(fn=displayMetricStatsUntrained, outputs=NLIUntrained)
         btnNLIStats.click(fn=displayMetricStatsTextNLINoLora, outputs=NLINoLoraStats)
         btnNLIStats.click(fn=displayMetricStatsTextNLILora, outputs=NLILoraStats)
         

    with gr.Tab("Semantic Text Similarity"):
         with gr.Row():
             gr.Markdown("<h1>Efficient Fine Tuning for Semantic Text Similarity</h1>")
         with gr.Row():
            with gr.Column(variant="panel"):
                gr.Markdown("""
                            <h2>Specifications</h2>
                            <p><b>Model:</b> Roberta Base <br>
                            <b>Number of Parameters:</b> 125 Million <br>
                            <b>Dataset:</b> Semantic Text Similarity Benchmark <br>
                            <b>NLP Task:</b> Semantic Text Similarity</p>
                            <p>Semantic text similarity measures the closeness in meaning of two pieces of text despite differences in their wording or structure. This task involves two input prompts which can be sentences, phrases or entire documents and assessing them for similarity. <br><br>This implementation uses the Roberta base model and training was performed on the semantic text similarity benchmark dataset which contains over 86k semantic pairs and their scores.<br><br><b>Results</b><br> We can see that for a comparable result the LoRA trained model manages to train for 30 epochs in 14.5 mins vs the conventional models 24 mins displaying a 60% increase in efficiency. </p>
                            """)
            with gr.Column(variant="panel"):
                sts_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
                sts_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
                sts_btn = gr.Button("Run")
                btnSTSStats = gr.Button("Display Training Metrics")
                btnTensorLinkSTSCon = gr.Button(value="View Conventional Training Graphs", link="https://huggingface.co./rajevan123/STS-Conventional-Fine-Tuning/tensorboard")
                btnTensorLinkSTSLora = gr.Button(value="View Lora Training Graphs", link="https://huggingface.co./rajevan123/STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-137-with-higher-r-mid/tensorboard")
                gr.Examples(
                    [
                        "the ball is green",
                        "i dont like apples",
                        "our air is clean becase of trees",
                    ],
                    sts_p1,
                    label="Try asking",
                )
                gr.Examples(
                    [
                        "the green ball",
                        "apples are great",
                        "trees produce oxygen",
                    ],
                    sts_p2,
                    label="Try asking",
                )

            with gr.Column(scale=3):
                with gr.Row(variant="panel"):
                    sts_out =  gr.Textbox(label= "Untrained Base Model")
                    STSUntrained = gr.Textbox(label = "Training Informaiton")

                with gr.Row(variant="panel"):
                    sts_out1 = gr.Textbox(label= "Conventionally Trained Model")
                    STSNoLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 23.96 mins")

                with gr.Row(variant="panel"):
                    sts_out2 = gr.Textbox(label= "LoRA Fine Tuned Model")
                    STSLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 14.62 mins")
                    
         sts_btn.click(fn=DebertaUntrained_fn, inputs=[sts_p1,sts_p2], outputs=sts_out)
         sts_btn.click(fn=DebertanoLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out1)
         sts_btn.click(fn=DebertawithLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out2)
         btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSUntrained)
         btnSTSStats.click(fn=displayMetricStatsTextSTSNoLora, outputs=STSNoLoraStats)
         btnSTSStats.click(fn=displayMetricStatsTextSTSLora, outputs=STSLoraStats)

    with gr.Tab("More information"):
        with gr.Row():
             gr.Markdown("<h1>More Information on the Project</h1>")
        with gr.Row():
             with gr.Column(scale=1):
                    gr.Markdown("""
                                <img style="width: 320px;height: 180px;position:center;" src="https://assets-global.website-files.com/601be0f0f62d8b2e2a92b830/647617bf24dd28930978918d_fine-tuning-ai.png"/>
                            """)
             with gr.Column(scale=3):
                 gr.Markdown("""<h2>Objective</h2>
                                <p>     Large Language Models (LLM) are complex natural language processing algorithms which can perform a multitude of tasks. These models outperform the average individual in many standardized tests, but they lack the ability to provide accurate results in specialized tasks. In the past, general purpose models have been fine tuned to provide domain-specific knowledge. However, as models become more complex, the number of parameters increases; just this year, we have witnessed an over 500x increase between GPT-3 and GPT-4, as such the computational cost of conventional fine tuning in some cases makes it prohibitive to do so. In this Engineering design project, we have been tasked to investigate fine tuning strategies to provide a more efficient solution to train LLMs on a singular GPU.</p>
                             """)
        with gr.Row():
            with gr.Column(scale=2):
                gr.Markdown("""<h2>Theory of LoRA</h2>
                                <p>     In the world of deep learning, Low-Rank adaptation (LoRA) stands out as an efficient strategy for fine tuning Large Language models. Being a subset of parameter efficient fine tuning (PEFT), LoRA is a targeted fine tuning process, which minimizes the necessity for retraining the entire model and substantially reduces computational costs.</p>
                                <p>     The fundamental property that LoRA is built on is the assumption that the large matrices which compose the layers of modern LLM models have an intrinsically low rank. The rank of a matrix refers to the number of linearly independent variables, and this is important because this means that we can decompose layers into much smaller matrices reducing the number of training parameters without losing information. A very simple example of this would be to imagine a 100 x 100 matrix with a rank of 2 which would have a 10 '000 trainable parameters. Should we decompose this matrix following the theorem we can create two constituent matrixes which can be multiplied together to restore the original. The decomposition matrices would be of sizes 100 x 2 and 2 x 100 resulting in only 400 trainable parameters, a 96% decrease. As the number of parameters are directly correlated to the amount of time required for training this is a massive difference. </p>
                             """)
            with gr.Column(scale=1):
                gr.Markdown("""<br><br><br><br>
                                <img style="width: 644px;height: 180px;" src="https://docs.h2o.ai/h2o/latest-stable/h2o-docs/_images/glrm_matrix_decomposition.png"/>
                            """)

if __name__ == "__main__":
    demo.launch()