Spaces:
Running
Running
File size: 30,493 Bytes
494624c 0d23076 c84b4ae 9a7561b dc92a64 b0abe15 56ab5a8 dc92a64 9e0ff12 494624c f386160 b0abe15 494624c f386160 494624c f386160 494624c b0abe15 f386160 3a5b288 b0abe15 d0c2cdc 8077ebf dc92a64 3a5b288 8077ebf 9e0ff12 3a5b288 9e0ff12 8077ebf 9e0ff12 494624c 0d23076 43d5145 494624c 43d5145 8077ebf 494624c 8077ebf dc92a64 e103045 8077ebf f386160 8077ebf f386160 8077ebf f386160 8077ebf dc92a64 c84b4ae 0af75b9 c84b4ae e103045 c00c585 0af75b9 8077ebf f386160 8077ebf f386160 0af75b9 8077ebf f386160 8077ebf dc92a64 77b5fba de93a91 e103045 250f9f3 de93a91 56ab5a8 de93a91 e103045 250f9f3 de93a91 77b5fba e103045 dc92a64 250f9f3 dc92a64 de93a91 e103045 de93a91 250f9f3 de93a91 250f9f3 c84b4ae de93a91 0af75b9 de93a91 77b5fba c00c585 de93a91 250f9f3 de93a91 dc92a64 ffc18a3 61357d4 ffc18a3 61357d4 dc92a64 fe93989 61357d4 ffc18a3 9a7561b 61357d4 fe93989 f386160 5db0d3c f386160 61357d4 5db0d3c 9a7561b 5db0d3c dc92a64 77b5fba 5db0d3c 61357d4 9a7561b 5db0d3c 8077ebf dc92a64 5db0d3c 494624c 0af75b9 5db0d3c 8077ebf 0af75b9 61357d4 8077ebf dc92a64 77b5fba 61357d4 fe93989 61357d4 fe93989 61357d4 9a7561b 61357d4 fe93989 b3206d8 f386160 5db0d3c f386160 61357d4 9a7561b d0c2cdc 8077ebf dc92a64 250f9f3 f386160 5db0d3c f386160 8077ebf f386160 5db0d3c d0c2cdc f386160 8077ebf f386160 d0c2cdc 5db0d3c 9a7561b 5db0d3c 8077ebf dc92a64 61357d4 5db0d3c 8077ebf 0af75b9 5db0d3c 8077ebf 0af75b9 8077ebf dc92a64 49d3c2c dc92a64 61357d4 fe93989 61357d4 9a7561b 61357d4 fe93989 c00c585 f386160 b3206d8 5db0d3c f386160 61357d4 9a7561b d0c2cdc 8077ebf dc92a64 77b5fba c84b4ae 5db0d3c 8077ebf 5db0d3c d0c2cdc 8077ebf d0c2cdc 5db0d3c 61357d4 9a7561b 5db0d3c 8077ebf dc92a64 5db0d3c fe93989 0af75b9 5db0d3c 8077ebf c84b4ae 8077ebf dc92a64 de93a91 61357d4 3a5b288 8487cf1 0d23076 9e0ff12 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 |
import json
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModel, BertForSequenceClassification, AlbertForSequenceClassification, DebertaForSequenceClassification, AutoModelForSequenceClassification, RobertaForSequenceClassification
from peft.auto import AutoPeftModelForSequenceClassification
from tensorboard.backend.event_processing import event_accumulator
from peft import PeftModel
from huggingface_hub import hf_hub_download
import plotly.express as px
import pandas as pd
# Parse sentiment analysis pipeline results
def parse_pipe_sa(pipe_out_text: str):
output_list = list(pipe_out_text)
pipe_label = output_list[0]['label']
pipe_score = float(output_list[0]['score'])*100
parsed_prediction = 'NULL'
if pipe_label == 'NEGATIVE' or pipe_label == 'LABEL_0':
parsed_prediction = f'This model thinks the sentiment is NEGATIVE. \nConfidence score of {pipe_score:.3f}%'
elif pipe_label == 'POSITIVE' or pipe_label == 'LABEL_1':
parsed_prediction = f'This model thinks the sentiment is POSITIVE. \nConfidence score of {pipe_score:.3f}%'
return parsed_prediction
# Parse sentiment NLI pipeline results
def parse_pipe_nli(pipe_out_text: str):
output_list = pipe_out_text
pipe_label = output_list['label']
pipe_score = float(output_list['score'])*100
parsed_prediction = 'NULL'
if pipe_label == 'NEGATIVE' or pipe_label == 'LABEL_0':
parsed_prediction = f'This model thinks the clauses CONFIRM each other. \nConfidence score of {pipe_score:.3f}'
elif pipe_label == 'POSITIVE' or pipe_label == 'LABEL_1':
parsed_prediction = f'This model thinks the clauses are Neutral. \nConfidence score of {pipe_score:.3f}'
elif pipe_label == 'POSITIVE' or pipe_label == 'LABEL_2':
parsed_prediction = f'This model thinks the clauses CONTRADICT each other. \nConfidence score of {pipe_score:.3f}'
return parsed_prediction
# Parse sentiment STS pipeline results
def parse_pipe_sts(pipe_out_text: str):
output_list = pipe_out_text
pipe_label = output_list['label']
pipe_score = float(output_list['score'])*100
parsed_prediction = 'NULL'
if pipe_label == 'NO SIMILARITY' or pipe_label == 'LABEL_0':
parsed_prediction = f'This model thinks the clauses have NO similarity. \nConfidence score of {pipe_score:.3f}%'
elif pipe_label == 'LITTLE SIMILARITY' or pipe_label == 'LABEL_1':
parsed_prediction = f'This model thinks the clauses have LITTLE similarity. \nConfidence score of {pipe_score:.3f}%'
elif pipe_label == 'MEDIUM OR HIGHER SIMILARITY' or pipe_label == 'LABEL_2':
parsed_prediction = f'This model thinks the clauses have MEDIUM to HIGH similarity. \nConfidence score of {pipe_score:.3f}%'
return parsed_prediction
#pretty sure this can be removed
loraModel = AutoPeftModelForSequenceClassification.from_pretrained("Intradiction/text_classification_WithLORA")
#tokenizer = AutoTokenizer.from_pretrained("distilbert-base-uncased")
tokenizer1 = AutoTokenizer.from_pretrained("albert-base-v2")
tokenizer2 = AutoTokenizer.from_pretrained("microsoft/deberta-v3-xsmall")
# Handle calls to DistilBERT------------------------------------------
base_model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
peft_model_id = "Intradiction/BERT-SA-LORA"
model = PeftModel.from_pretrained(model=base_model, model_id=peft_model_id)
sa_merged_model = model.merge_and_unload()
bbu_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
distilBERTUntrained_pipe = pipeline("sentiment-analysis", model="bert-base-uncased")
distilBERTnoLORA_pipe = pipeline(model="Intradiction/text_classification_NoLORA")
SentimentAnalysis_LORA_pipe = pipeline("sentiment-analysis", model=sa_merged_model, tokenizer=bbu_tokenizer)
#text class models
def distilBERTnoLORA_fn(text):
return parse_pipe_sa(distilBERTnoLORA_pipe(text))
def distilBERTwithLORA_fn(text):
return parse_pipe_sa(SentimentAnalysis_LORA_pipe(text))
def distilBERTUntrained_fn(text):
return parse_pipe_sa(distilBERTUntrained_pipe(text))
# Handle calls to ALBERT---------------------------------------------
base_model1 = AlbertForSequenceClassification.from_pretrained("Alireza1044/albert-base-v2-mnli")
peft_model_id1 = "m4faisal/NLI-Lora-Fine-Tuning-10K-ALBERT"
model1 = PeftModel.from_pretrained(model=base_model1, model_id=peft_model_id1)
sa_merged_model1 = model1.merge_and_unload()
bbu_tokenizer1 = AutoTokenizer.from_pretrained("Alireza1044/albert-base-v2-mnli")
ALbertUntrained_pipe = pipeline("text-classification", model="Alireza1044/albert-base-v2-mnli")
AlbertnoLORA_pipe = pipeline(model="m4faisal/NLI-Conventional-Fine-Tuning")
AlbertwithLORA_pipe = pipeline("text-classification",model=sa_merged_model1, tokenizer=bbu_tokenizer1)
#NLI models
def AlbertnoLORA_fn(text1, text2):
return parse_pipe_nli(AlbertnoLORA_pipe({'text': text1, 'text_pair': text2}))
def AlbertwithLORA_fn(text1, text2):
return parse_pipe_nli(AlbertwithLORA_pipe({'text': text1, 'text_pair': text2}))
def AlbertUntrained_fn(text1, text2):
return parse_pipe_nli(ALbertUntrained_pipe({'text': text1, 'text_pair': text2}))
# Handle calls to Deberta--------------------------------------------
base_model2 = RobertaForSequenceClassification.from_pretrained("FacebookAI/roberta-base", num_labels=3)
peft_model_id2 = "rajevan123/STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-137-with-higher-r-mid"
model2 = PeftModel.from_pretrained(model=base_model2, model_id=peft_model_id2)
sa_merged_model2 = model2.merge_and_unload()
bbu_tokenizer2 = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
DebertaUntrained_pipe = pipeline("text-classification", model="FacebookAI/roberta-base")
DebertanoLORA_pipe = pipeline(model="rajevan123/STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-137")
DebertawithLORA_pipe = pipeline("text-classification",model=sa_merged_model2, tokenizer=bbu_tokenizer2)
#STS models
def DebertanoLORA_fn(text1, text2):
return parse_pipe_sts(DebertanoLORA_pipe({'text': text1, 'text_pair': text2}))
def DebertawithLORA_fn(text1, text2):
return parse_pipe_sts(DebertawithLORA_pipe({'text': text1, 'text_pair': text2}))
#return ("working2")
def DebertaUntrained_fn(text1, text2):
return parse_pipe_sts(DebertaUntrained_pipe({'text': text1, 'text_pair': text2}))
#helper functions ------------------------------------------------------
#Text metrics for Untrained models
def displayMetricStatsUntrained():
return "No statistics to display for untrained models"
def displayMetricStatsText():
#file_name = 'events.out.tfevents.distilbertSA-conventional.0'
file_name = hf_hub_download(repo_id="Intradiction/text_classification_NoLORA", filename="runs/Nov28_21-52-51_81dc5cd53c46/events.out.tfevents.1701208378.81dc5cd53c46.1934.0")
event_acc = event_accumulator.EventAccumulator(file_name,
size_guidance={
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
event_accumulator.IMAGES: 4,
event_accumulator.AUDIO: 4,
event_accumulator.SCALARS: 0,
event_accumulator.HISTOGRAMS: 1,
})
event_acc.Reload()
accuracy_data = event_acc.Scalars('eval/accuracy')
loss_data = event_acc.Scalars('eval/loss')
#code to pull time data (very inaccurate)
# time_data = event_acc.Scalars('eval/runtime')
# Ttime = 0
# for time in time_data:
# Ttime+=time.value
# Ttime = str(round(Ttime/60,2))
# print(Ttime)
metrics = ("Active Training Time: 27.95 mins \n\n")
for i in range(0, len(loss_data)):
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
return metrics
def displayMetricStatsTextTCLora():
#file_name = 'events.out.tfevents.distilbertSA-LORA.0'
file_name = hf_hub_download(repo_id="Intradiction/BERT-SA-LORA", filename="runs/Mar16_18-10-29_INTRADICTION/events.out.tfevents.1710627034.INTRADICTION.31644.0")
event_acc = event_accumulator.EventAccumulator(file_name,
size_guidance={
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
event_accumulator.IMAGES: 4,
event_accumulator.AUDIO: 4,
event_accumulator.SCALARS: 0,
event_accumulator.HISTOGRAMS: 1,
})
event_acc.Reload()
accuracy_data = event_acc.Scalars('eval/accuracy')
loss_data = event_acc.Scalars('eval/loss')
#code to pull time data (very inaccurate)
# time_data = event_acc.Scalars('eval/runtime')
# Ttime = 0
# for time in time_data:
# Ttime+=time.value
# Ttime = str(round(Ttime/60,2))
# print(event_acc.Tags())
metrics = ("Active Training Time: 15.58 mins \n\n")
for i in range(0, len(loss_data)):
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
return metrics
def displayMetricStatsTextNLINoLora():
#file_name = 'events.out.tfevents.NLI-Conventional.1'
file_name = hf_hub_download(repo_id="m4faisal/NLI-Conventional-Fine-Tuning", filename="runs/Mar20_23-18-22_a7cbf6b28344/events.out.tfevents.1710976706.a7cbf6b28344.5071.0")
event_acc = event_accumulator.EventAccumulator(file_name,
size_guidance={
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
event_accumulator.IMAGES: 4,
event_accumulator.AUDIO: 4,
event_accumulator.SCALARS: 0,
event_accumulator.HISTOGRAMS: 1,
})
event_acc.Reload()
accuracy_data = event_acc.Scalars('eval/accuracy')
loss_data = event_acc.Scalars('eval/loss')
metrics = "Active Training Time: 6.74 mins \n\n"
for i in range(0, len(loss_data)):
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
return metrics
def displayMetricStatsTextNLILora():
#file_name = 'events.out.tfevents.NLI-Lora.0'
file_name = hf_hub_download(repo_id="m4faisal/NLI-Lora-Fine-Tuning-10K", filename="runs/Mar20_18-07-52_87caf1b1d04f/events.out.tfevents.1710958080.87caf1b1d04f.7531.0")
event_acc = event_accumulator.EventAccumulator(file_name,
size_guidance={
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
event_accumulator.IMAGES: 4,
event_accumulator.AUDIO: 4,
event_accumulator.SCALARS: 0,
event_accumulator.HISTOGRAMS: 1,
})
event_acc.Reload()
accuracy_data = event_acc.Scalars('eval/accuracy')
loss_data = event_acc.Scalars('eval/loss')
metrics = "Active Training Time: 15.04 mins \n\n"
for i in range(0, len(loss_data)):
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
return metrics
def displayMetricStatsTextSTSLora():
#file_name = 'events.out.tfevents.STS-Lora.2'
file_name = hf_hub_download(repo_id="rajevan123/STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-137-with-higher-r-mid", filename="runs/Mar28_19-51-13_fcdc58e67935/events.out.tfevents.1711655476.fcdc58e67935.625.0")
event_acc = event_accumulator.EventAccumulator(file_name,
size_guidance={
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
event_accumulator.IMAGES: 4,
event_accumulator.AUDIO: 4,
event_accumulator.SCALARS: 0,
event_accumulator.HISTOGRAMS: 1,
})
event_acc.Reload()
accuracy_data = event_acc.Scalars('eval/accuracy')
loss_data = event_acc.Scalars('eval/loss')
metrics = "Active Training Time: 41.07 mins \n\n"
for i in range(0, len(loss_data)):
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
return metrics
def displayMetricStatsTextSTSNoLora():
#file_name = 'events.out.tfevents.STS-Conventional.0'
file_name = hf_hub_download(repo_id="rajevan123/STS-conventional-Fine-Tuning-Capstone-roberta-base-filtered-137", filename="runs/Mar31_15-13-28_585e70ba99a4/events.out.tfevents.1711898010.585e70ba99a4.247.0")
event_acc = event_accumulator.EventAccumulator(file_name,
size_guidance={
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
event_accumulator.IMAGES: 4,
event_accumulator.AUDIO: 4,
event_accumulator.SCALARS: 0,
event_accumulator.HISTOGRAMS: 1,
})
event_acc.Reload()
accuracy_data = event_acc.Scalars('eval/accuracy')
loss_data = event_acc.Scalars('eval/loss')
metrics = "Active Training Time: 23.96 mins \n\n"
for i in range(0, len(loss_data)):
metrics = metrics + 'Epoch Number: ' + str(i) + '\n'
metrics = metrics + 'Accuracy (%): ' + str(round(accuracy_data[i].value * 100, 3)) + '\n'
metrics = metrics + 'Loss (%): ' + str(round(loss_data[i].value * 100, 3)) + '\n\n'
return metrics
def displayMetricStatsGraph():
file_name = 'events.out.tfevents.1701212945.784ae33ab242.985.0'
event_acc = event_accumulator.EventAccumulator(file_name,
size_guidance={
event_accumulator.COMPRESSED_HISTOGRAMS: 500,
event_accumulator.IMAGES: 4,
event_accumulator.AUDIO: 4,
event_accumulator.SCALARS: 0,
event_accumulator.HISTOGRAMS: 1,
})
event_acc.Reload()
accuracy_data = event_acc.Scalars('eval/accuracy')
loss_data = event_acc.Scalars("eval/loss")
epoch = []
metric = []
group = []
for i in range(0, len(accuracy_data)):
epoch.append(str(i))
metric.append(accuracy_data[i].value)
group.append('G1')
for j in range(0, len(loss_data)):
epoch.append(str(j))
metric.append(loss_data[j].value)
group.append('G2')
data = pd.DataFrame()
data['Epoch'] = epoch
data['Metric'] = metric
data['Group'] = group
#generate the actual plot
return px.line(data, x = 'Epoch', y = 'Metric', color=group, markers = True)
# #placeholder
# def chat1(message,history):
# history = history or []
# message = message.lower()
# if message.startswith("how many"):
# response = ("1 to 10")
# else:
# response = ("whatever man whatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever manwhatever man")
# history.append((message, response))
# return history, history
with gr.Blocks(
title="",
) as demo:
gr.Markdown("""
<div style="overflow: hidden;color:#fff;display: flex;flex-direction: column;align-items: center; position: relative; width: 100%; height: 180px;background-size: cover; background-image: url(https://www.grssigns.co.uk/wp-content/uploads/web-Header-Background.jpg);">
<img style="width: 130px;height: 60px;position: absolute;top:10px;left:10px" src="https://www.torontomu.ca/content/dam/tmumobile/images/TMU-Mobile-AppIcon.png"/>
<span style="margin-top: 40px;font-size: 36px ;font-family:fantasy;">Efficient Fine Tuning Of Large Language Models</span>
<span style="margin-top: 10px;font-size: 14px;">By: Rahul Adams, Greylyn Gao, Rajevan Logarajah & Mahir Faisal</span>
<span style="margin-top: 5px;font-size: 14px;">Group Id: AR06 FLC: Alice Reuda</span>
</div>
""")
with gr.Tab("Text Classification"):
with gr.Row():
gr.Markdown("<h1>Efficient Fine Tuning for Text Classification</h1>")
with gr.Row():
with gr.Column(variant="panel"):
gr.Markdown("""
<h2>Specifications</h2>
<p><b>Model:</b> Bert Base Uncased <br>
<b>Number of Parameters:</b> 110 Million <br>
<b>Dataset:</b> IMDB Movie review dataset <br>
<b>NLP Task:</b> Text Classification</p>
<p>Text classification is an NLP task that focuses on automatically ascribing a predefined category or labels to an input prompt. In this demonstration the Tiny Bert model has been used to classify the text on the basis of sentiment analysis, where the labels (negative and positive) will indicate the emotional state expressed by the input prompt.<br><br>The models were trained on the IMDB dataset which includes over 100k sentiment pairs pulled from IMDB movie reviews.<br><br><b>Results:</b><br> It can be seen that the LoRA fine tuned model performs comparably to the conventionally trained model. The difference arises in the training time where the conventional model takes almost 30 mins to train through 2 epochs the LoRA model takes half the time to train through 4 epochs.</p>
""")
with gr.Column(variant="panel"):
inp = gr.Textbox(placeholder="Prompt",label= "Enter Query")
btn = gr.Button("Run")
btnTextClassStats = gr.Button("Display Training Metrics")
btnTensorLinkTCNoLora = gr.Button(value="View Conventional Training Graphs", link="https://huggingface.co./Intradiction/text_classification_NoLORA/tensorboard")
btnTensorLinkTCLora = gr.Button(value="View LoRA Training Graphs", link="https://huggingface.co./Intradiction/BERT-SA-LORA/tensorboard")
gr.Examples(
[
"I thought this was a bit contrived",
"You would need to be a child to enjoy this",
"Drive more like Drive away",
],
inp,
label="Try asking",
)
with gr.Column(scale=3):
with gr.Row(variant="panel"):
TextClassOut = gr.Textbox(label= "Untrained Base Model")
TextClassUntrained = gr.Textbox(label = "Training Informaiton")
with gr.Row(variant="panel"):
TextClassOut1 = gr.Textbox(label="Conventionaly Trained Model")
TextClassNoLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 27.95 mins")
with gr.Row(variant="panel"):
TextClassOut2 = gr.Textbox(label= "LoRA Fine Tuned Model")
TextClassLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 15.58 mins")
btn.click(fn=distilBERTUntrained_fn, inputs=inp, outputs=TextClassOut)
btn.click(fn=distilBERTnoLORA_fn, inputs=inp, outputs=TextClassOut1)
btn.click(fn=distilBERTwithLORA_fn, inputs=inp, outputs=TextClassOut2)
btnTextClassStats.click(fn=displayMetricStatsUntrained, outputs=TextClassUntrained)
btnTextClassStats.click(fn=displayMetricStatsText, outputs=TextClassNoLoraStats)
btnTextClassStats.click(fn=displayMetricStatsTextTCLora, outputs=TextClassLoraStats)
with gr.Tab("Natural Language Inferencing"):
with gr.Row():
gr.Markdown("<h1>Efficient Fine Tuning for Natural Language Inferencing</h1>")
with gr.Row():
with gr.Column(variant="panel"):
gr.Markdown("""
<h2>Specifications</h2>
<p><b>Model:</b> Albert <br>
<b>Number of Parameters:</b> 11 Million <br>
<b>Dataset:</b> Stanford Natural Language Inference Dataset <br>
<b>NLP Task:</b> Natural Language Inferencing</p>
<p>Natural Language Inference (NLI) which can also be referred to as Textual Entailment is an NLP task with the objective of determining the relationship between two pieces of text. Ideally to determine logical inference (i.e. If the pairs contradict or confirm one another).<br><br>The models were trained on the Stanford Natural Language Inference Dataset which is a collection of 570k human-written English sentence pairs manually labeled for balanced classification, listed as positive, negative or neutral. <br><br><b>Results</b><br>While the time to train for the conventional model may be lower if we look closer at the number of epochs the models we trained over the LoRA model has a time per epoch of 1.5 mins vs the conventional's 3mins per epoch, showing significant improvement. </p>
""")
with gr.Column(variant="panel"):
nli_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
nli_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
nli_btn = gr.Button("Run")
btnNLIStats = gr.Button("Display Training Metrics")
btnTensorLinkNLICon = gr.Button(value="View Conventional Training Graphs", link="https://huggingface.co./m4faisal/NLI-Conventional-Fine-Tuning/tensorboard")
btnTensorLinkNLILora = gr.Button(value="View LoRA Training Graphs", link="https://huggingface.co./m4faisal/NLI-Lora-Fine-Tuning-10K/tensorboard")
gr.Examples(
[
"A man is awake",
"People like apples",
"A game with mutiple people playing",
],
nli_p1,
label="Try asking",
)
gr.Examples(
[
"A man is sleeping",
"Apples are good",
"Some people are playing a game",
],
nli_p2,
label="Try asking",
)
with gr.Column(scale=3):
with gr.Row(variant="panel"):
NLIOut = gr.Textbox(label= "Untrained Base Model")
NLIUntrained = gr.Textbox(label = "Training Informaiton")
with gr.Row(variant="panel"):
NLIOut1 = gr.Textbox(label= "Conventionaly Trained Model")
NLINoLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 6.74 mins")
with gr.Row(variant="panel"):
NLIOut2 = gr.Textbox(label= "LoRA Fine Tuned Model")
NLILoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 15.04 mins")
nli_btn.click(fn=AlbertUntrained_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut)
nli_btn.click(fn=AlbertnoLORA_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut1)
nli_btn.click(fn=AlbertwithLORA_fn, inputs=[nli_p1,nli_p2], outputs=NLIOut2)
btnNLIStats.click(fn=displayMetricStatsUntrained, outputs=NLIUntrained)
btnNLIStats.click(fn=displayMetricStatsTextNLINoLora, outputs=NLINoLoraStats)
btnNLIStats.click(fn=displayMetricStatsTextNLILora, outputs=NLILoraStats)
with gr.Tab("Semantic Text Similarity"):
with gr.Row():
gr.Markdown("<h1>Efficient Fine Tuning for Semantic Text Similarity</h1>")
with gr.Row():
with gr.Column(variant="panel"):
gr.Markdown("""
<h2>Specifications</h2>
<p><b>Model:</b> Roberta Base <br>
<b>Number of Parameters:</b> 125 Million <br>
<b>Dataset:</b> Semantic Text Similarity Benchmark <br>
<b>NLP Task:</b> Semantic Text Similarity</p>
<p>Semantic text similarity measures the closeness in meaning of two pieces of text despite differences in their wording or structure. This task involves two input prompts which can be sentences, phrases or entire documents and assessing them for similarity. <br><br>This implementation uses the Roberta base model and training was performed on the semantic text similarity benchmark dataset which contains over 86k semantic pairs and their scores.<br><br><b>Results</b><br> We can see that for a comparable result the LoRA trained model manages to train for 30 epochs in 14.5 mins vs the conventional models 24 mins displaying a 60% increase in efficiency. </p>
""")
with gr.Column(variant="panel"):
sts_p1 = gr.Textbox(placeholder="Prompt One",label= "Enter Query")
sts_p2 = gr.Textbox(placeholder="Prompt Two",label= "Enter Query")
sts_btn = gr.Button("Run")
btnSTSStats = gr.Button("Display Training Metrics")
btnTensorLinkSTSCon = gr.Button(value="View Conventional Training Graphs", link="https://huggingface.co./rajevan123/STS-Conventional-Fine-Tuning/tensorboard")
btnTensorLinkSTSLora = gr.Button(value="View Lora Training Graphs", link="https://huggingface.co./rajevan123/STS-Lora-Fine-Tuning-Capstone-roberta-base-filtered-137-with-higher-r-mid/tensorboard")
gr.Examples(
[
"the ball is green",
"i dont like apples",
"our air is clean becase of trees",
],
sts_p1,
label="Try asking",
)
gr.Examples(
[
"the green ball",
"apples are great",
"trees produce oxygen",
],
sts_p2,
label="Try asking",
)
with gr.Column(scale=3):
with gr.Row(variant="panel"):
sts_out = gr.Textbox(label= "Untrained Base Model")
STSUntrained = gr.Textbox(label = "Training Informaiton")
with gr.Row(variant="panel"):
sts_out1 = gr.Textbox(label= "Conventionally Trained Model")
STSNoLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 23.96 mins")
with gr.Row(variant="panel"):
sts_out2 = gr.Textbox(label= "LoRA Fine Tuned Model")
STSLoraStats = gr.Textbox(label = "Training Informaiton - Active Training Time: 14.62 mins")
sts_btn.click(fn=DebertaUntrained_fn, inputs=[sts_p1,sts_p2], outputs=sts_out)
sts_btn.click(fn=DebertanoLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out1)
sts_btn.click(fn=DebertawithLORA_fn, inputs=[sts_p1,sts_p2], outputs=sts_out2)
btnSTSStats.click(fn=displayMetricStatsUntrained, outputs=STSUntrained)
btnSTSStats.click(fn=displayMetricStatsTextSTSNoLora, outputs=STSNoLoraStats)
btnSTSStats.click(fn=displayMetricStatsTextSTSLora, outputs=STSLoraStats)
with gr.Tab("More information"):
with gr.Row():
gr.Markdown("<h1>More Information on the Project</h1>")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
<img style="width: 320px;height: 180px;position:center;" src="https://assets-global.website-files.com/601be0f0f62d8b2e2a92b830/647617bf24dd28930978918d_fine-tuning-ai.png"/>
""")
with gr.Column(scale=3):
gr.Markdown("""<h2>Objective</h2>
<p> Large Language Models (LLM) are complex natural language processing algorithms which can perform a multitude of tasks. These models outperform the average individual in many standardized tests, but they lack the ability to provide accurate results in specialized tasks. In the past, general purpose models have been fine tuned to provide domain-specific knowledge. However, as models become more complex, the number of parameters increases; just this year, we have witnessed an over 500x increase between GPT-3 and GPT-4, as such the computational cost of conventional fine tuning in some cases makes it prohibitive to do so. In this Engineering design project, we have been tasked to investigate fine tuning strategies to provide a more efficient solution to train LLMs on a singular GPU.</p>
""")
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("""<h2>Theory of LoRA</h2>
<p> In the world of deep learning, Low-Rank adaptation (LoRA) stands out as an efficient strategy for fine tuning Large Language models. Being a subset of parameter efficient fine tuning (PEFT), LoRA is a targeted fine tuning process, which minimizes the necessity for retraining the entire model and substantially reduces computational costs.</p>
<p> The fundamental property that LoRA is built on is the assumption that the large matrices which compose the layers of modern LLM models have an intrinsically low rank. The rank of a matrix refers to the number of linearly independent variables, and this is important because this means that we can decompose layers into much smaller matrices reducing the number of training parameters without losing information. A very simple example of this would be to imagine a 100 x 100 matrix with a rank of 2 which would have a 10 '000 trainable parameters. Should we decompose this matrix following the theorem we can create two constituent matrixes which can be multiplied together to restore the original. The decomposition matrices would be of sizes 100 x 2 and 2 x 100 resulting in only 400 trainable parameters, a 96% decrease. As the number of parameters are directly correlated to the amount of time required for training this is a massive difference. </p>
""")
with gr.Column(scale=1):
gr.Markdown("""<br><br><br><br>
<img style="width: 644px;height: 180px;" src="https://docs.h2o.ai/h2o/latest-stable/h2o-docs/_images/glrm_matrix_decomposition.png"/>
""")
if __name__ == "__main__":
demo.launch() |