Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------ | |
# Copyright (c) 2023-present, BAAI. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, esither express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------ | |
"""Engine utilities.""" | |
import collections | |
import functools | |
import pickle | |
import torch | |
import numpy as np | |
from tokenize_anything.utils import logging | |
GLOBAL_DDP_GROUP = None | |
def count_params(module, trainable=True, unit="M"): | |
"""Return the number of parameters.""" | |
counts = [v.size().numel() for v in module.parameters() if v.requires_grad or (not trainable)] | |
return sum(counts) / {"M": 1e6, "B": 1e9}[unit] | |
def freeze_module(module): | |
"""Freeze parameters of given module.""" | |
module.eval() | |
for param in module.parameters(): | |
param.requires_grad = False | |
def get_device(index): | |
"""Create the available device object.""" | |
if torch.cuda.is_available(): | |
return torch.device("cuda", index) | |
for device_type in ("mps",): | |
try: | |
if getattr(torch.backends, device_type).is_available(): | |
return torch.device(device_type, index) | |
except AttributeError: | |
pass | |
return torch.device("cpu") | |
def get_param_groups(module, layer_lr_decay=1.0): | |
"""Separate parameters into groups.""" | |
memo, groups, inner = {}, collections.OrderedDict(), module | |
if isinstance(module, torch.nn.parallel.DistributedDataParallel): | |
inner = module.module | |
lr_scale_getter = None | |
if layer_lr_decay < 1.0 and hasattr(inner.image_encoder, "get_lr_scale"): | |
lr_scale_getter = functools.partial(inner.image_encoder.get_lr_scale, decay=layer_lr_decay) | |
for name, param in module.named_parameters(): | |
if not param.requires_grad: | |
continue | |
attrs = collections.OrderedDict() | |
if lr_scale_getter: | |
attrs["lr_scale"] = lr_scale_getter(name) | |
memo[name] = param.shape | |
no_weight_decay = not (name.endswith("weight") and param.dim() > 1) | |
no_weight_decay = getattr(param, "no_weight_decay", no_weight_decay) | |
if no_weight_decay: | |
attrs["weight_decay"] = 0 | |
group_name = "/".join(["%s:%s" % (v[0], v[1]) for v in list(attrs.items())]) | |
if group_name not in groups: | |
groups[group_name] = {"params": []} | |
groups[group_name].update(attrs) | |
groups[group_name]["params"].append(param) | |
return list(groups.values()) | |
def load_weights(module, weights_file, prefix_removed="", strict=True): | |
"""Load a weights file.""" | |
if not weights_file: | |
return | |
if weights_file.endswith(".pkl"): | |
with open(weights_file, "rb") as f: | |
state_dict = pickle.load(f) | |
for k, v in state_dict.items(): | |
state_dict[k] = torch.from_numpy(v) if isinstance(v, np.ndarray) else v | |
else: | |
state_dict = torch.load(weights_file) | |
if prefix_removed: | |
new_state_dict = type(state_dict)() | |
for k in list(state_dict.keys()): | |
new_state_dict[k.replace(prefix_removed, "")] = state_dict.pop(k) | |
state_dict = new_state_dict | |
module.load_state_dict(state_dict, strict=strict) | |
def manual_seed(seed, device_and_seed=None): | |
"""Set the cpu and device random seed.""" | |
torch.manual_seed(seed) | |
if device_and_seed is not None: | |
device_index, device_seed = device_and_seed | |
device_type = get_device(device_index).type | |
np.random.seed(device_seed) | |
if device_type in ("cuda", "mps"): | |
getattr(torch, device_type).manual_seed(device_seed) | |
def synchronize_device(device): | |
"""Synchronize the computation of device.""" | |
if device.type in ("cuda", "mps"): | |
getattr(torch, device.type).synchronize(device) | |
def create_ddp_group(cfg, ranks=None, devices=None, num_nodes=1): | |
"""Create group for data parallelism.""" | |
if not torch.distributed.is_initialized(): | |
torch.distributed.init_process_group(backend="nccl") | |
world_rank = torch.distributed.get_rank() | |
ranks = ranks if ranks else [i for i in range(cfg.NUM_GPUS)] | |
logging.set_root(world_rank == ranks[0]) | |
devices_per_node = len(ranks) // num_nodes | |
devices = devices if devices else [i % devices_per_node for i in range(len(ranks))] | |
cfg.GPU_ID = devices[world_rank] | |
torch.cuda.set_device(cfg.GPU_ID) | |
global GLOBAL_DDP_GROUP | |
GLOBAL_DDP_GROUP = torch.distributed.new_group(ranks) | |
return GLOBAL_DDP_GROUP | |
def get_ddp_group(): | |
"""Return the process group for data parallelism.""" | |
return GLOBAL_DDP_GROUP | |
def get_ddp_rank(): | |
"""Return the rank in the data parallelism group.""" | |
ddp_group = get_ddp_group() | |
if ddp_group is None: | |
return 0 | |
return torch.distributed.get_rank(ddp_group) | |
def apply_ddp_group(module): | |
"""Apply data parallelism group for given module.""" | |
ddp_group = get_ddp_group() | |
if ddp_group is None: | |
return module | |
return torch.nn.parallel.DistributedDataParallel(module, process_group=ddp_group) | |