Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------ | |
# Copyright (c) 2023-present, BAAI. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, esither express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ------------------------------------------------------------------------ | |
"""Learning rate schedulers.""" | |
import math | |
class ConstantLR(object): | |
"""Constant LR scheduler.""" | |
def __init__(self, **kwargs): | |
self._lr_max = kwargs.pop("lr_max") | |
self._lr_min = kwargs.pop("lr_min", 0) | |
self._warmup_steps = kwargs.pop("warmup_steps", 0) | |
self._warmup_factor = kwargs.pop("warmup_factor", 0) | |
if kwargs: | |
raise ValueError("Unexpected arguments: " + ",".join(v for v in kwargs)) | |
self._step_count = 0 | |
self._last_decay = 1.0 | |
def step(self): | |
self._step_count += 1 | |
def get_lr(self): | |
if self._step_count < self._warmup_steps: | |
alpha = (self._step_count + 1.0) / self._warmup_steps | |
return self._lr_max * (alpha + (1.0 - alpha) * self._warmup_factor) | |
return self._lr_min + (self._lr_max - self._lr_min) * self.get_decay() | |
def get_decay(self): | |
return self._last_decay | |
class CosineLR(ConstantLR): | |
"""LR scheduler with cosine decay.""" | |
def __init__(self, lr_max, max_steps, lr_min=0, decay_step=1, **kwargs): | |
super(CosineLR, self).__init__(lr_max=lr_max, lr_min=lr_min, **kwargs) | |
self._decay_step = decay_step | |
self._max_steps = max_steps | |
def get_decay(self): | |
t = self._step_count - self._warmup_steps | |
t_max = self._max_steps - self._warmup_steps | |
if t > 0 and t % self._decay_step == 0: | |
self._last_decay = 0.5 * (1.0 + math.cos(math.pi * t / t_max)) | |
return self._last_decay | |
class LinearLR(ConstantLR): | |
"""LR scheduler with linear decay.""" | |
def __init__(self, lr_max, max_steps, lr_min=0, decay_step=1, **kwargs): | |
super(LinearLR, self).__init__(lr_max=lr_max, lr_min=lr_min, **kwargs) | |
self._decay_step = decay_step | |
self._max_steps = max_steps | |
def get_decay(self): | |
t = self._step_count - self._warmup_steps | |
t_max = self._max_steps - self._warmup_steps | |
if t > 0 and t % self._decay_step == 0: | |
self._last_decay = 1.0 - float(t) / t_max | |
return self._last_decay | |