# Copyright (c) 2024-present, BAAI. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
##############################################################################
"""NOVA T2I application."""
import argparse
import os
import gradio as gr
import numpy as np
import spaces
import torch
from diffnext.pipelines import NOVAPipeline
from diffnext.utils import export_to_image
# Switch to the allocator optimized for dynamic shape.
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "expandable_segments:True"
def parse_args():
"""Parse arguments."""
parser = argparse.ArgumentParser(description="Serve NOVA T2I application")
parser.add_argument("--model", default="BAAI/nova-d48w1024-sdxl1024", help="model path")
parser.add_argument("--device", type=int, default=0, help="device index")
parser.add_argument("--precision", default="float16", help="compute precision")
return parser.parse_args()
@spaces.GPU()
def generate_image4(
prompt,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_diffusion_steps,
progress=gr.Progress(track_tqdm=True),
):
"""Generate 4 images."""
args = locals()
seed = np.random.randint(2147483647) if randomize_seed else seed
device = getattr(pipe, "_offload_device", pipe.device)
generator = torch.Generator(device=device).manual_seed(seed)
images = pipe(generator=generator, num_images_per_prompt=4, **args).images
return [export_to_image(image, quality=95) for image in images] + [seed]
css = """#col-container {margin: 0 auto; max-width: 1366px}"""
title = "Autoregressive Video Generation without Vector Quantization"
abbr = "NOn-quantized Video Autoregressive"
header = (
"
"
"
Autoregressive Video Generation without Vector Quantization
"
"
"
"
"
)
header2 = f"🖼️ A {abbr} model for continuous visual generation
"
examples = [
"a selfie of an old man with a white beard.",
"a woman with long hair next to a luminescent bird.",
"a digital artwork of a cat styled in a whimsical fashion. The overall vibe is quirky and artistic.", # noqa
"a shiba inu wearing a beret and black turtleneck.",
"a beautiful afghan women by red hair and green eyes.",
"beautiful fireworks in the sky with red, white and blue.",
"A dragon perched majestically on a craggy, smoke-wreathed mountain.",
"A photo of llama wearing sunglasses standing on the deck of a spaceship with the Earth in the background.", # noqa
"Two pandas in fluffy slippers and bathrobes, lazily munching on bamboo.",
]
if __name__ == "__main__":
args = parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu", args.device)
model_args = {"torch_dtype": getattr(torch, args.precision.lower()), "trust_remote_code": True}
pipe = NOVAPipeline.from_pretrained(args.model, **model_args).to(device)
# Main Application.
app = gr.Blocks(css=css, theme="origin").__enter__()
container = gr.Column(elem_id="col-container").__enter__()
_, main_row = gr.Markdown(header), gr.Row().__enter__()
# Input.
input_col = gr.Column().__enter__()
prompt = gr.Text(
label="Prompt",
placeholder="Describe the video you want to generate",
value="a shiba inu wearing a beret and black turtleneck.",
lines=5,
)
negative_prompt = gr.Text(
label="Negative Prompt",
placeholder="Describe what you don't want in the image",
value="low quality, deformed, distorted, disfigured, fused fingers, bad anatomy, weird hand", # noqa
lines=5,
)
# fmt: off
adv_opt = gr.Accordion("Advanced Options", open=True).__enter__()
seed = gr.Slider(label="Seed", maximum=2147483647, step=1, value=0)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(label="Guidance scale", minimum=1, maximum=10, step=0.1, value=5)
with gr.Row():
num_inference_steps = gr.Slider(label="Inference steps", minimum=1, maximum=128, step=1, value=64) # noqa
num_diffusion_steps = gr.Slider(label="Diffusion steps", minimum=1, maximum=50, step=1, value=25) # noqa
adv_opt.__exit__()
generate = gr.Button("Generate Image", variant="primary", size="lg")
input_col.__exit__()
# fmt: on
# Results.
result_col, _ = gr.Column().__enter__(), gr.Markdown(header2)
with gr.Row():
result1 = gr.Image(label="Result1", show_label=False)
result2 = gr.Image(label="Result2", show_label=False)
with gr.Row():
result3 = gr.Image(label="Result3", show_label=False)
result4 = gr.Image(label="Result4", show_label=False)
result_col.__exit__(), main_row.__exit__()
# Examples.
with gr.Row():
gr.Examples(examples=examples, inputs=[prompt])
# Events.
container.__exit__()
gr.on(
triggers=[generate.click, prompt.submit, negative_prompt.submit],
fn=generate_image4,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
num_diffusion_steps,
],
outputs=[result1, result2, result3, result4, seed],
)
app.__exit__(), app.launch()