File size: 9,894 Bytes
a950ee6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import argparse
import os
import torch
import torch.nn.functional as F
import json
from segment_anything_volumetric import sam_model_registry
from network.model import SegVol
from data_process.demo_data_process import process_ct_gt
import monai.transforms as transforms
from utils.monai_inferers_utils import sliding_window_inference, generate_box, select_points, build_binary_cube, build_binary_points, logits2roi_coor
from utils.visualize import draw_result

def set_parse():
    # %% set up parser
    parser = argparse.ArgumentParser()
    parser.add_argument("--test_mode", default=True, type=bool)
    parser.add_argument("--resume", type = str, default = '')
    parser.add_argument("-infer_overlap", default=0.5, type=float, help="sliding window inference overlap")
    parser.add_argument("-spatial_size", default=(32, 256, 256), type=tuple)
    parser.add_argument("-patch_size", default=(4, 16, 16), type=tuple)
    parser.add_argument('-work_dir', type=str, default='./work_dir')
    ### demo
    parser.add_argument('--demo_config', type=str, required=True)
    parser.add_argument("--clip_ckpt", type = str, default = './config/clip')
    args = parser.parse_args()
    return args

def dice_score(preds, labels):  # on GPU
    assert preds.shape[0] == labels.shape[0], "predict & target batch size don't match\n" + str(preds.shape) + str(labels.shape)
    predict = preds.view(1, -1)
    target = labels.view(1, -1)
    if target.shape[1] < 1e8:
        predict = predict.cuda()
        target = target.cuda()
    predict = torch.sigmoid(predict)
    predict = torch.where(predict > 0.5, 1., 0.)
    
    tp = torch.sum(torch.mul(predict, target))
    den = torch.sum(predict) + torch.sum(target) + 1
    dice = 2 * tp / den

    if target.shape[1] < 1e8:
        predict = predict.cpu()
        target = target.cpu()
    return dice

def zoom_in_zoom_out(args, segvol_model, image, image_resize, gt3D, gt3D_resize, categories=None):
    logits_labels_record = {}
    image_single_resize = image_resize
    image_single = image[0,0]
    ori_shape = image_single.shape
    for item_idx in range(len(categories)):
        # get label to generate prompts
        label_single = gt3D[0][item_idx]
        label_single_resize = gt3D_resize[0][item_idx]
        # skip meaningless categories
        if torch.sum(label_single) == 0:
            print('No object, skip')
            continue
        # generate prompts
        text_single = categories[item_idx] if args.use_text_prompt else None
        if categories is not None: print(f'inference |{categories[item_idx]}| target...')
        points_single = None
        box_single = None
        if args.use_point_prompt:
            point, point_label = select_points(label_single_resize, num_positive_extra=3, num_negative_extra=3)
            points_single = (point.unsqueeze(0).float().cuda(), point_label.unsqueeze(0).float().cuda()) 
            binary_points_resize = build_binary_points(point, point_label, label_single_resize.shape)
        if args.use_box_prompt:
            box_single = generate_box(label_single_resize).unsqueeze(0).float().cuda()
            binary_cube_resize = build_binary_cube(box_single, binary_cube_shape=label_single_resize.shape)
        
        ####################
        # zoom-out inference:
        print('--- zoom out inference ---')
        print(f'use text-prompt [{text_single!=None}], use box-prompt [{box_single!=None}], use point-prompt [{points_single!=None}]')
        with torch.no_grad():
            logits_global_single = segvol_model(image_single_resize.cuda(),
                                                text=text_single, 
                                                boxes=box_single, 
                                                points=points_single)
        
        # resize back global logits
        logits_global_single = F.interpolate(
                logits_global_single.cpu(),
                size=ori_shape, mode='nearest')[0][0]
        
        # build prompt reflection for zoom-in
        if args.use_point_prompt:
            binary_points = F.interpolate(
                binary_points_resize.unsqueeze(0).unsqueeze(0).float(),
                size=ori_shape, mode='nearest')[0][0]
        if args.use_box_prompt:
            binary_cube = F.interpolate(
                binary_cube_resize.unsqueeze(0).unsqueeze(0).float(),
                size=ori_shape, mode='nearest')[0][0]
        zoom_out_dice = dice_score(logits_global_single.squeeze(), label_single.squeeze())
        logits_labels_record[categories[item_idx]] = (
            zoom_out_dice,
            image_single, 
            points_single,
            box_single,
            logits_global_single, 
            label_single)
        print(f'zoom out inference done with zoom_out_dice: {zoom_out_dice:.4f}')
        if not args.use_zoom_in:
            continue

        ####################
        # zoom-in inference:
        min_d, min_h, min_w, max_d, max_h, max_w = logits2roi_coor(args.spatial_size, logits_global_single)
        if min_d is None:
            print('Fail to detect foreground!')
            continue

        # Crop roi
        image_single_cropped = image_single[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1].unsqueeze(0).unsqueeze(0)
        global_preds = (torch.sigmoid(logits_global_single[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1])>0.5).long()
        
        assert not (args.use_box_prompt and args.use_point_prompt)
        # label_single_cropped = label_single[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1].unsqueeze(0).unsqueeze(0)
        prompt_reflection = None
        if args.use_box_prompt:
            binary_cube_cropped = binary_cube[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
            prompt_reflection = (
                binary_cube_cropped.unsqueeze(0).unsqueeze(0),
                global_preds.unsqueeze(0).unsqueeze(0)
            )
        if args.use_point_prompt:
            binary_points_cropped = binary_points[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1]
            prompt_reflection = (
                binary_points_cropped.unsqueeze(0).unsqueeze(0),
                global_preds.unsqueeze(0).unsqueeze(0)
            )
    
        ## inference
        with torch.no_grad():
            logits_single_cropped = sliding_window_inference(
                    image_single_cropped.cuda(), prompt_reflection,
                    args.spatial_size, 1, segvol_model, args.infer_overlap,
                    text=text_single,
                    use_box=args.use_box_prompt,
                    use_point=args.use_point_prompt,
                )
            logits_single_cropped = logits_single_cropped.cpu().squeeze()
        logits_global_single[min_d:max_d+1, min_h:max_h+1, min_w:max_w+1] = logits_single_cropped
        zoom_in_dice = dice_score(logits_global_single.squeeze(), label_single.squeeze())
        logits_labels_record[categories[item_idx]] = (
            zoom_in_dice,
            image_single, 
            points_single,
            box_single,
            logits_global_single, 
            label_single)
        print(f'===> zoom out dice {zoom_out_dice:.4f} -> zoom-out-zoom-in dice {zoom_in_dice:.4f} <===')
    return logits_labels_record

def inference_single_ct(args, segvol_model, data_item, categories):
    segvol_model.eval()
    image, gt3D = data_item["image"].float(), data_item["label"]
    image_zoom_out, gt3D__zoom_out = data_item["zoom_out_image"].float(), data_item['zoom_out_label']

    logits_labels_record = zoom_in_zoom_out(
        args, segvol_model, 
        image.unsqueeze(0), image_zoom_out.unsqueeze(0), 
        gt3D.unsqueeze(0), gt3D__zoom_out.unsqueeze(0),     # add batch dim
        categories=categories)
    
    # visualize
    if args.visualize:
        for target, values in logits_labels_record.items():
            dice_score, image, point_prompt, box_prompt, logits, labels = values
            print(f'{target} result with Dice score {dice_score:.4f} visualizing')
            draw_result(target + f"-Dice {dice_score:.4f}", image, box_prompt, point_prompt, logits, labels, args.spatial_size, args.work_dir)

def main(args):
    gpu = 0
    torch.cuda.set_device(gpu)
    # build model
    sam_model = sam_model_registry['vit'](args=args)
    segvol_model = SegVol(
                        image_encoder=sam_model.image_encoder, 
                        mask_decoder=sam_model.mask_decoder,
                        prompt_encoder=sam_model.prompt_encoder,
                        clip_ckpt=args.clip_ckpt,
                        roi_size=args.spatial_size,
                        patch_size=args.patch_size,
                        test_mode=args.test_mode,
                        ).cuda()
    segvol_model = torch.nn.DataParallel(segvol_model, device_ids=[gpu])

    # load param
    if os.path.isfile(args.resume):
        ## Map model to be loaded to specified single GPU
        loc = 'cuda:{}'.format(gpu)
        checkpoint = torch.load(args.resume, map_location=loc)
        segvol_model.load_state_dict(checkpoint['model'], strict=True)
        print("loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']))

    # load demo config
    with open(args.demo_config, 'r') as file:
        config_dict = json.load(file)
    ct_path, gt_path, categories = config_dict['demo_case']['ct_path'], config_dict['demo_case']['gt_path'], config_dict['categories']

    # preprocess for data
    data_item = process_ct_gt(ct_path, gt_path, categories, args.spatial_size)   # keys: image, label

    # seg config for prompt & zoom-in-zoom-out
    args.use_zoom_in = True
    args.use_text_prompt = True
    args.use_box_prompt = True
    args.use_point_prompt = False
    args.visualize = False

    inference_single_ct(args, segvol_model, data_item, categories)

if __name__ == "__main__":
    args = set_parse()
    main(args)