import gradio as gr import torch import time from transformers import LlamaForCausalLM, PreTrainedTokenizerFast, pipeline model_name = "Azurro/APT3-1B-Instruct-v1" tokenizer = PreTrainedTokenizerFast.from_pretrained(model_name) model = LlamaForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16) def generate_text(prompt, max_length, temperature, top_k, top_p): prompt = f'[INST] {prompt.strip()} [/INST]' input_ids = tokenizer(prompt, return_tensors='pt', add_special_tokens=False).input_ids.to(model.device) start_time = time.time() output = model.generate( inputs=input_ids, max_new_tokens=max_length, temperature=temperature, top_k=top_k, do_sample=(temperature > 0), top_p=top_p, num_beams=1, bos_token_id=1, eos_token_id=2, pad_token_id=3, repetition_penalty=1.1 ) elapsed_time = time.time() - start_time decoded_output = tokenizer.decode(output[0]) input_tokens_count = len(input_ids[0]) input_chars_count = len(prompt) output_tokens_count = len(output[0]) output_chars_count = len(decoded_output) gen_speed = output_tokens_count / elapsed_time decoded_output = decoded_output[len(prompt):].replace('','').strip() print(f"Input tokens: {input_tokens_count} (chars: {input_chars_count}), Output tokens: {output_tokens_count} (chars: {output_chars_count}), Gen Time: {elapsed_time:.2f} secs ({gen_speed} toks/sec)") print(f"{'*'*10} Input {'*'*10}\n{prompt}") print(f"{'*'*10} Output {'*'*10}\n{prompt}") print(f"{'*'*30}") return decoded_output, input_tokens_count, input_chars_count, output_tokens_count, output_chars_count, gen_speed demo = gr.Interface( fn=generate_text, inputs=[ gr.inputs.Textbox(label="Input Text"), gr.inputs.Slider(1, 1000, step=1, default=100, label="Max Length"), gr.inputs.Slider(0.0, 1.5, step=0.1, default=0.6, label="Temperature"), gr.inputs.Slider(1, 400, step=1, default=200, label="Top K"), gr.inputs.Slider(0.0, 1.0, step=0.05, default=0.95, label="Top P") ], outputs=[ gr.outputs.Textbox(label="Generated Text"), gr.outputs.Textbox(label="Input Tokens Count"), gr.outputs.Textbox(label="Input Characters Count"), gr.outputs.Textbox(label="Output Tokens Count"), gr.outputs.Textbox(label="Output Characters Count"), gr.outputs.Textbox(label="Generation speed in tokens per second"), ] ) demo.queue(concurrency_count=1) demo.launch(max_threads=20)