import streamlit as st from models.rubert_MODEL import classify_text from models.bag_of_words_MODEL import predict from models.lstm_MODEL import predict_review import time class_prefix = 'This review is likely...' st.title("Movie Review Classification") st.write("This page will compare three models: Bag of Words/TF-IDF, LSTM, and BERT.") # Example placeholder for user input user_input = st.text_area("") if st.button('Classify with All Models'): # Measure and display Bag of Words/TF-IDF prediction time start_time = time.time() bow_tfidf_result = predict(user_input) end_time = time.time() st.write(f'{class_prefix} {bow_tfidf_result} according to Bag of Words/TF-IDF. Time taken: {end_time - start_time:.2f} seconds.') # Measure and display LSTM prediction time start_time = time.time() lstm_result = predict_review(user_input) end_time = time.time() st.write(f'{class_prefix} {lstm_result} according to LSTM. Time taken: {end_time - start_time:.2f} seconds.') # Measure and display ruBERT prediction time start_time = time.time() rubert_result = classify_text(user_input) end_time = time.time() st.write(f'{class_prefix} {rubert_result} according to ruBERT. Time taken: {end_time - start_time:.2f} seconds.') # Placeholder buttons for model selection # if st.button('Classify with BoW/TF-IDF'): # st.write(f'{class_prefix}{predict(user_input)}') # if st.button('Classify with LSTM'): # st.write(f'{class_prefix}{predict_review(user_input)}') # if st.button('Classify with ruBERT'): # st.write(f'{class_prefix}{classify_text(user_input)}')