Aure3D commited on
Commit
af3a069
·
verified ·
1 Parent(s): 9a70729

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -18
app.py CHANGED
@@ -2,26 +2,23 @@ import gradio as gr
2
  import numpy as np
3
  import random
4
 
5
- # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
  import torch
8
 
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
- model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
- if torch.cuda.is_available():
13
- torch_dtype = torch.float16
14
- else:
15
- torch_dtype = torch.float32
16
 
 
17
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
18
  pipe = pipe.to(device)
19
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
23
-
24
- # @spaces.GPU #[uncomment to use ZeroGPU]
25
  def infer(
26
  prompt,
27
  negative_prompt,
@@ -36,8 +33,9 @@ def infer(
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
 
39
- generator = torch.Generator().manual_seed(seed)
40
 
 
41
  image = pipe(
42
  prompt=prompt,
43
  negative_prompt=negative_prompt,
@@ -50,11 +48,10 @@ def infer(
50
 
51
  return image, seed
52
 
53
-
54
  examples = [
55
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
- "An astronaut riding a green horse",
57
- "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
  css = """
@@ -66,7 +63,7 @@ css = """
66
 
67
  with gr.Blocks(css=css) as demo:
68
  with gr.Column(elem_id="col-container"):
69
- gr.Markdown(" # Text-to-Image Gradio Template")
70
 
71
  with gr.Row():
72
  prompt = gr.Text(
@@ -105,7 +102,7 @@ with gr.Blocks(css=css) as demo:
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
- value=1024, # Replace with defaults that work for your model
109
  )
110
 
111
  height = gr.Slider(
@@ -113,7 +110,7 @@ with gr.Blocks(css=css) as demo:
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
- value=1024, # Replace with defaults that work for your model
117
  )
118
 
119
  with gr.Row():
@@ -122,7 +119,7 @@ with gr.Blocks(css=css) as demo:
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
- value=0.0, # Replace with defaults that work for your model
126
  )
127
 
128
  num_inference_steps = gr.Slider(
@@ -130,7 +127,7 @@ with gr.Blocks(css=css) as demo:
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
- value=2, # Replace with defaults that work for your model
134
  )
135
 
136
  gr.Examples(examples=examples, inputs=[prompt])
 
2
  import numpy as np
3
  import random
4
 
 
5
  from diffusers import DiffusionPipeline
6
  import torch
7
 
8
+ # Check device and set appropriate precision
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
+ model_repo_id = "fofr/sdxl-emoji" # New model URL
11
 
12
+ # Determine the appropriate dtype based on availability of GPU
13
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
 
 
14
 
15
+ # Load the new pipeline
16
  pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
17
  pipe = pipe.to(device)
18
 
19
  MAX_SEED = np.iinfo(np.int32).max
20
  MAX_IMAGE_SIZE = 1024
21
 
 
 
22
  def infer(
23
  prompt,
24
  negative_prompt,
 
33
  if randomize_seed:
34
  seed = random.randint(0, MAX_SEED)
35
 
36
+ generator = torch.Generator(device).manual_seed(seed)
37
 
38
+ # Generate the image
39
  image = pipe(
40
  prompt=prompt,
41
  negative_prompt=negative_prompt,
 
48
 
49
  return image, seed
50
 
 
51
  examples = [
52
+ "Astronaut emoji in a jungle, vibrant colors, 4k",
53
+ "Emoji of a cat riding a skateboard",
54
+ "Emoji of a cake with flowers",
55
  ]
56
 
57
  css = """
 
63
 
64
  with gr.Blocks(css=css) as demo:
65
  with gr.Column(elem_id="col-container"):
66
+ gr.Markdown(" # Emoji Generator Gradio Template")
67
 
68
  with gr.Row():
69
  prompt = gr.Text(
 
102
  minimum=256,
103
  maximum=MAX_IMAGE_SIZE,
104
  step=32,
105
+ value=512,
106
  )
107
 
108
  height = gr.Slider(
 
110
  minimum=256,
111
  maximum=MAX_IMAGE_SIZE,
112
  step=32,
113
+ value=512,
114
  )
115
 
116
  with gr.Row():
 
119
  minimum=0.0,
120
  maximum=10.0,
121
  step=0.1,
122
+ value=7.5,
123
  )
124
 
125
  num_inference_steps = gr.Slider(
 
127
  minimum=1,
128
  maximum=50,
129
  step=1,
130
+ value=20,
131
  )
132
 
133
  gr.Examples(examples=examples, inputs=[prompt])