Spaces:
Paused
Paused
doc upload option added
Browse files
app.py
CHANGED
@@ -4,13 +4,15 @@ from typing import Dict
|
|
4 |
import os
|
5 |
import shutil
|
6 |
import logging
|
7 |
-
|
8 |
import torch
|
9 |
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
import os
|
13 |
|
|
|
|
|
14 |
# Load .env file
|
15 |
load_dotenv()
|
16 |
|
@@ -33,6 +35,8 @@ aadhar_model = LayoutLMv3ForTokenClassification.from_pretrained(
|
|
33 |
aadhar_model,
|
34 |
use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
35 |
)
|
|
|
|
|
36 |
aadhar_model = aadhar_model.to(device)
|
37 |
|
38 |
# pan model
|
@@ -40,6 +44,8 @@ pan_model = "AuditEdge/doc_ocr_p" # Replace with your fine-tuned model if appli
|
|
40 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
41 |
print(f"Using device: {device}")
|
42 |
|
|
|
|
|
43 |
# Load the processor (tokenizer + image processor)
|
44 |
processor_pan = LayoutLMv3Processor.from_pretrained(
|
45 |
pan_model,
|
@@ -113,7 +119,9 @@ app.add_middleware(
|
|
113 |
|
114 |
# Configure directories
|
115 |
UPLOAD_FOLDER = './uploads/'
|
|
|
116 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Ensure the main upload folder exists
|
|
|
117 |
|
118 |
UPLOAD_DIRS = {
|
119 |
"aadhar_file": "uploads/aadhar/",
|
@@ -122,9 +130,22 @@ UPLOAD_DIRS = {
|
|
122 |
"gst_file": "uploads/gst/",
|
123 |
}
|
124 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
# Ensure individual directories exist
|
126 |
for dir_path in UPLOAD_DIRS.values():
|
127 |
os.makedirs(dir_path, exist_ok=True)
|
|
|
|
|
|
|
|
|
|
|
128 |
|
129 |
# Logger configuration
|
130 |
logging.basicConfig(level=logging.INFO)
|
@@ -217,14 +238,27 @@ async def aadhar_ocr(
|
|
217 |
# Log received files
|
218 |
logging.info(f"Received files: {list(file_paths.keys())}")
|
219 |
print("file_paths",file_paths)
|
220 |
-
|
221 |
-
|
222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
# Perform inference
|
224 |
-
result = perform_inference(
|
225 |
|
226 |
return {"status": "success", "result": result}
|
227 |
|
228 |
except Exception as e:
|
229 |
logging.error(f"Error processing files: {e}")
|
230 |
-
raise HTTPException(status_code=500, detail="Internal Server Error")
|
|
|
|
|
|
|
|
4 |
import os
|
5 |
import shutil
|
6 |
import logging
|
7 |
+
|
8 |
import torch
|
9 |
from transformers import LayoutLMv3Processor, LayoutLMv3ForTokenClassification
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
import os
|
13 |
|
14 |
+
from utils import doc_processing
|
15 |
+
|
16 |
# Load .env file
|
17 |
load_dotenv()
|
18 |
|
|
|
35 |
aadhar_model,
|
36 |
use_auth_token=HUGGINGFACE_AUTH_TOKEN
|
37 |
)
|
38 |
+
|
39 |
+
|
40 |
aadhar_model = aadhar_model.to(device)
|
41 |
|
42 |
# pan model
|
|
|
44 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
45 |
print(f"Using device: {device}")
|
46 |
|
47 |
+
|
48 |
+
|
49 |
# Load the processor (tokenizer + image processor)
|
50 |
processor_pan = LayoutLMv3Processor.from_pretrained(
|
51 |
pan_model,
|
|
|
119 |
|
120 |
# Configure directories
|
121 |
UPLOAD_FOLDER = './uploads/'
|
122 |
+
processing_folder = "./processed_images"
|
123 |
os.makedirs(UPLOAD_FOLDER, exist_ok=True) # Ensure the main upload folder exists
|
124 |
+
os.makedirs(processing_folder,exist_ok=True)
|
125 |
|
126 |
UPLOAD_DIRS = {
|
127 |
"aadhar_file": "uploads/aadhar/",
|
|
|
130 |
"gst_file": "uploads/gst/",
|
131 |
}
|
132 |
|
133 |
+
process_dirs = {
|
134 |
+
"aadhar_file": "processed_images/aadhar/",
|
135 |
+
"pan_file": "processed_images/pan/",
|
136 |
+
"cheque_file": "processed_images/cheque/",
|
137 |
+
"gst_file": "processed_images/gst/",
|
138 |
+
|
139 |
+
}
|
140 |
+
|
141 |
# Ensure individual directories exist
|
142 |
for dir_path in UPLOAD_DIRS.values():
|
143 |
os.makedirs(dir_path, exist_ok=True)
|
144 |
+
|
145 |
+
for dir_path in process_dirs.values():
|
146 |
+
os.makedirs(dir_path, exist_ok=True)
|
147 |
+
|
148 |
+
|
149 |
|
150 |
# Logger configuration
|
151 |
logging.basicConfig(level=logging.INFO)
|
|
|
238 |
# Log received files
|
239 |
logging.info(f"Received files: {list(file_paths.keys())}")
|
240 |
print("file_paths",file_paths)
|
241 |
+
|
242 |
+
files = {}
|
243 |
+
for key, value in file_paths.items():
|
244 |
+
name = value.split("/")[-1].split(".")[0]
|
245 |
+
id_type = key.split("_")[0]
|
246 |
+
doc_type = value.split("/")[-1].split(".")[1]
|
247 |
+
f_path = value
|
248 |
+
preprocessing = doc_processing(name,id_type,doc_type,f_path)
|
249 |
+
response = preprocessing.process()
|
250 |
+
files[key] = response["output_p"]
|
251 |
+
print("response",response)
|
252 |
+
|
253 |
+
|
254 |
# Perform inference
|
255 |
+
result = perform_inference(files)
|
256 |
|
257 |
return {"status": "success", "result": result}
|
258 |
|
259 |
except Exception as e:
|
260 |
logging.error(f"Error processing files: {e}")
|
261 |
+
# raise HTTPException(status_code=500, detail="Internal Server Error")
|
262 |
+
return {"status":400}
|
263 |
+
|
264 |
+
|
utils.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fitz
|
2 |
+
from PIL import Image
|
3 |
+
|
4 |
+
class doc_processing:
|
5 |
+
|
6 |
+
def __init__(self, name, id_type, doc_type, f_path):
|
7 |
+
|
8 |
+
self.name = name
|
9 |
+
self.id_type = id_type
|
10 |
+
self.doc_type = doc_type
|
11 |
+
self.f_path = f_path
|
12 |
+
# self.o_path = o_path
|
13 |
+
|
14 |
+
|
15 |
+
def pdf_to_image_scale(self):
|
16 |
+
pdf_document = fitz.open(self.f_path)
|
17 |
+
if self.id_type == "gst":
|
18 |
+
page_num = 2
|
19 |
+
else:
|
20 |
+
page_num = 0
|
21 |
+
|
22 |
+
page = pdf_document.load_page(page_num)
|
23 |
+
pix = page.get_pixmap() # Render page as a pixmap (image)
|
24 |
+
|
25 |
+
# Convert pixmap to PIL Image
|
26 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
27 |
+
|
28 |
+
original_width, original_height = image.size
|
29 |
+
|
30 |
+
print("original_width",original_width)
|
31 |
+
print("original_height",original_height)
|
32 |
+
|
33 |
+
|
34 |
+
new_width = (1000 / original_width) * original_width
|
35 |
+
new_height = (1000 / original_height) * original_height
|
36 |
+
|
37 |
+
print("new_width",new_width)
|
38 |
+
print("new_height",new_height)
|
39 |
+
# new_width =
|
40 |
+
# new_height =
|
41 |
+
image.resize((int(new_width), int(new_height)), Image.Resampling.LANCZOS)
|
42 |
+
output_path = "processed_images/{}/{}.jpeg".format(self.id_type,self.name)
|
43 |
+
image.save(output_path)
|
44 |
+
return {"success":200,"output_p":output_path}
|
45 |
+
|
46 |
+
|
47 |
+
def scale_img(self):
|
48 |
+
|
49 |
+
image = Image.open(self.f_path).convert("RGB")
|
50 |
+
original_width, original_height = image.size
|
51 |
+
|
52 |
+
print("original_width",original_width)
|
53 |
+
print("original_height",original_height)
|
54 |
+
|
55 |
+
|
56 |
+
new_width = (1000 / original_width) * original_width
|
57 |
+
new_height = (1000 / original_height) * original_height
|
58 |
+
|
59 |
+
print("new_width",new_width)
|
60 |
+
print("new_height",new_height)
|
61 |
+
# new_width =
|
62 |
+
# new_height =
|
63 |
+
image.resize((int(new_width), int(new_height)), Image.Resampling.LANCZOS)
|
64 |
+
output_path = "processed_images/{}/{}.jpeg".format(self.id_type,self.name)
|
65 |
+
image.save(output_path)
|
66 |
+
return {"success":200,"output_p":output_path}
|
67 |
+
|
68 |
+
def process(self):
|
69 |
+
if self.doc_type == "pdf":
|
70 |
+
response = self.pdf_to_image_scale()
|
71 |
+
else:
|
72 |
+
response = self.scale_img()
|
73 |
+
|
74 |
+
return response
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
# files = {
|
81 |
+
# "aadhar_file": "/home/javmulla/model_one/test_images_aadhar/test_two.jpg",
|
82 |
+
# "pan_file": "/home/javmulla/model_one/test_images_pan/6ea33087.jpeg",
|
83 |
+
# "cheque_file": "/home/javmulla/model_one/test_images_cheque/0f81678a.jpeg",
|
84 |
+
# "gst_file": "/home/javmulla/model_one/test_images_gst/0a52fbcb_page3_image_0.jpg"
|
85 |
+
# }
|
86 |
+
|
87 |
+
|
88 |
+
# files = {
|
89 |
+
# "aadhar_file": "/home/javmulla/model_one/test_images_aadhar/test_two.jpg",
|
90 |
+
# "pan_file": "/home/javmulla/model_one/test_images_pan/6ea33087.jpeg",
|
91 |
+
# "cheque_file": "/home/javmulla/model_one/test_images_cheque/0f81678a.jpeg",
|
92 |
+
# "gst_file": "test_Images_folder/gst/e.pdf"
|
93 |
+
# }
|
94 |
+
|
95 |
+
# for key, value in files.items():
|
96 |
+
# name = value.split("/")[-1].split(".")[0]
|
97 |
+
# id_type = key.split("_")[0]
|
98 |
+
# doc_type = value.split("/")[-1].split(".")[1]
|
99 |
+
# f_path = value
|
100 |
+
# preprocessing = doc_processing(name,id_type,doc_type,f_path)
|
101 |
+
# response = preprocessing.process()
|
102 |
+
# print("response",response)
|
103 |
+
|
104 |
+
|
105 |
+
|
106 |
+
|
107 |
+
|
108 |
+
# id_type, doc_type, f_path
|
109 |
+
|
110 |
+
|