|
import numpy as np |
|
import random |
|
import math |
|
|
|
from sklearn.metrics import * |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.utils.data import Dataset |
|
import pickle |
|
|
|
|
|
def word2idx(word, words): |
|
if word in words.keys(): |
|
return int(words[word]) |
|
|
|
return 0 |
|
|
|
def pad_seq(dataset, max_len): |
|
output = [] |
|
for seq in dataset: |
|
pad = np.zeros(max_len) |
|
pad[:len(seq)] = seq |
|
output.append(pad) |
|
|
|
return np.array(output) |
|
|
|
def str2bool(seq): |
|
out = [] |
|
for s in seq: |
|
if s == "positive": |
|
out.append(1) |
|
elif s == "negative": |
|
out.append(0) |
|
|
|
return np.array(out) |
|
|
|
class API_Dataset(Dataset): |
|
def __init__(self, apta, esm_prot, y, apta_attn_mask, prot_attn_mask): |
|
super(Dataset, self).__init__() |
|
|
|
self.apta = np.array(apta, dtype=np.int64) |
|
self.esm_prot = np.array(esm_prot, dtype=np.int64) |
|
self.y = np.array(y, dtype=np.int64) |
|
self.apta_attn_mask = np.array(apta_attn_mask) |
|
self.prot_attn_mask = np.array(prot_attn_mask) |
|
self.len = len(self.apta) |
|
|
|
def __len__(self): |
|
return self.len |
|
|
|
def __getitem__(self, index): |
|
return torch.tensor(self.apta[index], dtype=torch.int64), torch.tensor(self.esm_prot[index], dtype=torch.int64), torch.tensor(self.y[index], dtype=torch.int64), torch.tensor(self.apta_attn_mask[index], dtype=torch.int64), torch.tensor(self.prot_attn_mask[index], dtype=torch.int64) |
|
|
|
def find_opt_threshold(target, pred): |
|
result = 0 |
|
best = 0 |
|
|
|
for i in range(0, 1000): |
|
pred_threshold = np.where(pred > i/1000, 1, 0) |
|
now = f1_score(target, pred_threshold) |
|
if now > best: |
|
result = i/1000 |
|
best = now |
|
|
|
return result |
|
|
|
def argument_seqset(seqset): |
|
arg_seqset = [] |
|
for s, ss in seqset: |
|
arg_seqset.append([s, ss]) |
|
|
|
arg_seqset.append([s[::-1], ss[::-1]]) |
|
|
|
return arg_seqset |
|
|
|
def augment_apis(apta, prot, ys): |
|
aug_apta = [] |
|
aug_prot = [] |
|
aug_y = [] |
|
for a, p, y in zip(apta, prot, ys): |
|
aug_apta.append(a) |
|
aug_prot.append(p) |
|
aug_y.append(y) |
|
|
|
aug_apta.append(a[::-1]) |
|
aug_prot.append(p) |
|
aug_y.append(y) |
|
|
|
return np.array(aug_apta), np.array(aug_prot), np.array(aug_y) |
|
|
|
|
|
|
|
def load_data_source(filepath): |
|
with open(filepath,"rb") as fr: |
|
dataset = pickle.load(fr) |
|
dataset_train = np.array(dataset[dataset["dataset"]=="training dataset"]) |
|
dataset_test = np.array(dataset[dataset["dataset"]=="test dataset"]) |
|
dataset_bench = np.array(dataset[dataset['dataset']=='benchmark dataset']) |
|
|
|
return dataset_train, dataset_test, dataset_bench |
|
|
|
|
|
def get_dataset(filepath, prot_max_len, n_prot_vocabs, prot_words): |
|
dataset_train, dataset_test, dataset_bench = load_data_source(filepath) |
|
|
|
|
|
arg_apta, arg_prot, arg_y = augment_apis(dataset_train[:, 0], dataset_train[:, 1], dataset_train[:, 2]) |
|
datasets_train = [rna2vec(arg_apta), tokenize_sequences(arg_prot, prot_max_len, n_prot_vocabs, prot_words), str2bool(arg_y)] |
|
datasets_test = [rna2vec(dataset_test[:, 0]), tokenize_sequences(dataset_test[:, 1], prot_max_len, n_prot_vocabs, prot_words), str2bool(dataset_test[:, 2])] |
|
datasets_bench = [rna2vec(dataset_bench[:, 0]), tokenize_sequences(dataset_bench[:, 1], prot_max_len, n_prot_vocabs, prot_words), str2bool(dataset_bench[:, 2])] |
|
|
|
return datasets_train, datasets_test, datasets_bench |
|
|
|
|
|
def get_esm_dataset(filepath, batch_converter, alphabet): |
|
dataset_train, dataset_test, dataset_bench = load_data_source(filepath) |
|
|
|
|
|
|
|
|
|
arg_apta, arg_prot, arg_y = dataset_train[:, 0], dataset_train[:, 1], dataset_train[:, 2] |
|
arg_apta, arg_prot, arg_y = augment_apis(arg_apta, arg_prot, arg_y) |
|
|
|
train_inputs = [(i, j) for i, j in zip(arg_y, arg_prot)] |
|
_, _, prot_tokens = batch_converter(train_inputs) |
|
datasets_train = [rna2vec(arg_apta), prot_tokens, str2bool(arg_y)] |
|
|
|
test_inputs = [(i, j) for i, j in enumerate(dataset_test[:, 1])] |
|
_, _, test_prot_tokens = batch_converter(test_inputs) |
|
datasets_test = [rna2vec(dataset_test[:, 0]), test_prot_tokens, str2bool(dataset_test[:, 2])] |
|
|
|
bench_inputs = [(i, j) for i, j in enumerate(dataset_bench[:, 1])] |
|
_, _, bench_prot_tokens = batch_converter(bench_inputs) |
|
|
|
bench_prot_tokenized = bench_prot_tokens[:, :1678] |
|
|
|
prot_ex = torch.ones((bench_prot_tokenized.shape[0], 1678), dtype=torch.int64)*alphabet.padding_idx |
|
prot_ex[:, :bench_prot_tokenized.shape[1]] = bench_prot_tokenized |
|
datasets_bench = [rna2vec(dataset_bench[:, 0]), prot_ex, str2bool(dataset_bench[:, 2])] |
|
|
|
return datasets_train, datasets_test, datasets_bench |
|
|
|
def get_nt_esm_dataset(filepath, nt_tokenizer, batch_converter, alphabet): |
|
dataset_train, dataset_test, dataset_bench = load_data_source(filepath) |
|
|
|
arg_apta, arg_prot, arg_y = augment_apis(dataset_train[:, 0], dataset_train[:, 1], dataset_train[:, 2]) |
|
|
|
max_length = 275 |
|
|
|
train_inputs = [(i, j) for i, j in zip(arg_y, arg_prot)] |
|
_, _, prot_tokens = batch_converter(train_inputs) |
|
apta_toks = nt_tokenizer.batch_encode_plus(arg_apta, return_tensors='pt', padding='max_length', max_length=max_length)['input_ids'] |
|
apta_attention_mask = apta_toks != nt_tokenizer.pad_token_id |
|
prot_attention_mask = prot_tokens != alphabet.padding_idx |
|
|
|
datasets_train = [apta_toks, prot_tokens, str2bool(arg_y), apta_attention_mask, prot_attention_mask] |
|
|
|
test_inputs = [(i, j) for i, j in enumerate(dataset_test[:, 1])] |
|
_, _, test_prot_tokens = batch_converter(test_inputs) |
|
prot_ex = torch.ones((test_prot_tokens.shape[0], 1680), dtype=torch.int64)*alphabet.padding_idx |
|
prot_ex[:, :test_prot_tokens.shape[1]] = test_prot_tokens |
|
apta_toks = nt_tokenizer.batch_encode_plus(dataset_test[:, 0], return_tensors='pt', padding='max_length', max_length=max_length)['input_ids'] |
|
apta_attention_mask = apta_toks != nt_tokenizer.pad_token_id |
|
prot_attention_mask = prot_ex != alphabet.padding_idx |
|
datasets_test = [apta_toks, prot_ex, str2bool(dataset_test[:, 2]), apta_attention_mask, prot_attention_mask] |
|
|
|
bench_inputs = [(i, j) for i, j in enumerate(dataset_bench[:, 1])] |
|
_, _, bench_prot_tokens = batch_converter(bench_inputs) |
|
|
|
prot_ex = torch.ones((bench_prot_tokens.shape[0], 1680), dtype=torch.int64)*alphabet.padding_idx |
|
prot_ex[:, :bench_prot_tokens.shape[1]] = bench_prot_tokens |
|
apta_toks = nt_tokenizer.batch_encode_plus(dataset_bench[:, 0], return_tensors='pt', padding='max_length', max_length=max_length)['input_ids'] |
|
apta_attention_mask = apta_toks != nt_tokenizer.pad_token_id |
|
prot_attention_mask = prot_ex != alphabet.padding_idx |
|
datasets_bench = [apta_toks, prot_ex, str2bool(dataset_bench[:, 2]), apta_attention_mask, prot_attention_mask] |
|
|
|
return datasets_train, datasets_test, datasets_bench |
|
|
|
def get_scores(target, pred): |
|
threshold = find_opt_threshold(target, pred) |
|
pred_threshold = np.where(pred > threshold, 1, 0) |
|
acc = accuracy_score(target, pred_threshold) |
|
roc_auc = roc_auc_score(target, pred) |
|
mcc = matthews_corrcoef(target, pred_threshold) |
|
f1 = f1_score(target, pred_threshold) |
|
pr_auc = average_precision_score(target, pred) |
|
cls_report = classification_report(target, pred_threshold) |
|
scores = { |
|
'threshold': threshold, |
|
'acc': acc, |
|
'roc_auc': roc_auc, |
|
'mcc': mcc, |
|
'f1': f1, |
|
'pr_auc': pr_auc, |
|
'cls_report': cls_report |
|
} |
|
return scores |
|
|