Atom007 commited on
Commit
662bcdf
1 Parent(s): 4d39569

app python

Browse files
Files changed (1) hide show
  1. app.py +66 -0
app.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ #from torch import autocast // only for GPU
4
+
5
+ from PIL import Image
6
+ import numpy as np
7
+ from io import BytesIO
8
+ import os
9
+ MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD')
10
+
11
+ #from diffusers import StableDiffusionPipeline
12
+ from diffusers import StableDiffusionImg2ImgPipeline
13
+
14
+
15
+ YOUR_TOKEN=MY_SECRET_TOKEN
16
+
17
+ device="cpu"
18
+
19
+ #prompt_pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4", use_auth_token=YOUR_TOKEN)
20
+ #prompt_pipe.to(device)
21
+
22
+ img_pipe = StableDiffusionImg2ImgPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", use_auth_token=YOUR_TOKEN)
23
+ img_pipe.to(device)
24
+
25
+ source_img = gr.Image(source="upload", type="filepath", label="init_img | 512*512 px")
26
+ gallery = gr.Gallery(label="Generated images", show_label=False, elem_id="gallery").style(grid=[1], height="auto")
27
+
28
+ def resize(value,img):
29
+ #baseheight = value
30
+ img = Image.open(img)
31
+ #hpercent = (baseheight/float(img.size[1]))
32
+ #wsize = int((float(img.size[0])*float(hpercent)))
33
+ #img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS)
34
+ img = img.resize((value,value), Image.Resampling.LANCZOS)
35
+ return img
36
+
37
+
38
+ def infer(source_img, prompt, guide, steps, seed, strength):
39
+ generator = torch.Generator('cpu').manual_seed(seed)
40
+
41
+ source_image = resize(512, source_img)
42
+ source_image.save('source.png')
43
+
44
+ images_list = img_pipe([prompt] * 1, init_image=source_image, strength=strength, guidance_scale=guide, num_inference_steps=steps)
45
+ images = []
46
+ safe_image = Image.open(r"unsafe.png")
47
+
48
+ for i, image in enumerate(images_list["images"]):
49
+ if(images_list["nsfw_content_detected"][i]):
50
+ images.append(safe_image)
51
+ else:
52
+ images.append(image)
53
+ return images
54
+
55
+ print("Everything is working fine !")
56
+
57
+ title="Img2Img Stable Diffusion CPU"
58
+ description="<p style='text-align: center;'>Img2Img Stable Diffusion example using CPU and HF token. <br />Warning: Slow process... ~5/10 min inference time. <b>NSFW filter enabled. <br /> <img id='visitor-badge' alt='visitor badge' src='https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.stable-diffusion-img2img' style='display: inline-block'/></b></p>"
59
+
60
+ gr.Interface(fn=infer, inputs=[source_img,
61
+ "text",
62
+ gr.Slider(2, 15, value = 7, label = 'Guidence Scale'),
63
+ gr.Slider(10, 50, value = 25, step = 1, label = 'Number of Iterations'),
64
+ gr.Slider(label = "Seed", minimum = 0, maximum = 2147483647, step = 1, randomize = True),
65
+ gr.Slider(label='Strength', minimum = 0, maximum = 1, step = .05, value = .75)],
66
+ outputs=gallery,title=title,description=description, allow_flagging="manual", flagging_dir="flagged").queue(max_size=100).launch(enable_queue=True)