Update gen_api_answer.py
Browse files- gen_api_answer.py +469 -36
gen_api_answer.py
CHANGED
@@ -1,51 +1,484 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
|
|
32 |
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
{ai_response}
|
45 |
-
```
|
46 |
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
+
import anthropic
|
3 |
+
from together import Together
|
4 |
+
import cohere
|
5 |
+
import json
|
6 |
+
import re
|
7 |
+
import os
|
8 |
+
import requests
|
9 |
+
from prompts import (
|
10 |
+
JUDGE_SYSTEM_PROMPT,
|
11 |
+
PROMETHEUS_PROMPT,
|
12 |
+
PROMETHEUS_PROMPT_WITH_REFERENCE,
|
13 |
+
ATLA_PROMPT,
|
14 |
+
ATLA_PROMPT_WITH_REFERENCE,
|
15 |
+
FLOW_JUDGE_PROMPT
|
16 |
+
)
|
17 |
+
from transformers import AutoTokenizer
|
18 |
|
19 |
+
# Initialize clients
|
20 |
+
anthropic_client = anthropic.Anthropic()
|
21 |
+
openai_client = OpenAI()
|
22 |
+
together_client = Together()
|
23 |
+
hf_api_key = os.getenv("HF_API_KEY")
|
24 |
+
flow_judge_api_key = os.getenv("FLOW_JUDGE_API_KEY")
|
25 |
+
cohere_client = cohere.ClientV2(os.getenv("CO_API_KEY"))
|
26 |
+
salesforce_api_key = os.getenv("SALESFORCE_API_KEY")
|
27 |
+
def get_openai_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
28 |
+
"""Get response from OpenAI API"""
|
29 |
+
try:
|
30 |
+
response = openai_client.chat.completions.create(
|
31 |
+
model=model_name,
|
32 |
+
messages=[
|
33 |
+
{"role": "system", "content": system_prompt},
|
34 |
+
{"role": "user", "content": prompt},
|
35 |
+
],
|
36 |
+
max_completion_tokens=max_tokens,
|
37 |
+
temperature=temperature,
|
38 |
+
)
|
39 |
+
return response.choices[0].message.content
|
40 |
+
except Exception as e:
|
41 |
+
return f"Error with OpenAI model {model_name}: {str(e)}"
|
42 |
|
43 |
+
def get_anthropic_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
44 |
+
"""Get response from Anthropic API"""
|
45 |
+
try:
|
46 |
+
response = anthropic_client.messages.create(
|
47 |
+
model=model_name,
|
48 |
+
max_tokens=max_tokens,
|
49 |
+
temperature=temperature,
|
50 |
+
system=system_prompt,
|
51 |
+
messages=[{"role": "user", "content": [{"type": "text", "text": prompt}]}],
|
52 |
+
)
|
53 |
+
return response.content[0].text
|
54 |
+
except Exception as e:
|
55 |
+
return f"Error with Anthropic model {model_name}: {str(e)}"
|
56 |
|
57 |
+
def get_together_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
58 |
+
"""Get response from Together API"""
|
59 |
+
try:
|
60 |
+
response = together_client.chat.completions.create(
|
61 |
+
model=model_name,
|
62 |
+
messages=[
|
63 |
+
{"role": "system", "content": system_prompt},
|
64 |
+
{"role": "user", "content": prompt},
|
65 |
+
],
|
66 |
+
max_tokens=max_tokens,
|
67 |
+
temperature=temperature,
|
68 |
+
stream=False,
|
69 |
+
)
|
70 |
+
return response.choices[0].message.content
|
71 |
+
except Exception as e:
|
72 |
+
return f"Error with Together model {model_name}: {str(e)}"
|
73 |
|
74 |
+
def get_prometheus_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
|
75 |
+
"""Get response from Hugging Face model"""
|
76 |
+
try:
|
77 |
+
headers = {
|
78 |
+
"Accept": "application/json",
|
79 |
+
"Authorization": f"Bearer {hf_api_key}",
|
80 |
+
"Content-Type": "application/json"
|
81 |
+
}
|
82 |
+
|
83 |
+
# Create messages list for chat template
|
84 |
+
messages = []
|
85 |
+
if system_prompt:
|
86 |
+
messages.append({"role": "system", "content": system_prompt})
|
87 |
+
messages.append({"role": "user", "content": prompt})
|
88 |
+
|
89 |
+
# Apply chat template
|
90 |
+
model_id = "prometheus-eval/prometheus-7b-v2.0"
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key)
|
92 |
+
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
93 |
+
|
94 |
+
payload = {
|
95 |
+
"inputs": formatted_prompt,
|
96 |
+
"parameters": {
|
97 |
+
"max_new_tokens": max_tokens,
|
98 |
+
"return_full_text": False,
|
99 |
+
"temperature": temperature
|
100 |
+
}
|
101 |
+
}
|
102 |
+
|
103 |
+
response = requests.post(
|
104 |
+
"https://otb7jglxy6r37af6.us-east-1.aws.endpoints.huggingface.cloud",
|
105 |
+
headers=headers,
|
106 |
+
json=payload
|
107 |
+
)
|
108 |
+
return response.json()[0]["generated_text"]
|
109 |
+
except Exception as e:
|
110 |
+
return f"Error with Hugging Face model {model_name}: {str(e)}"
|
111 |
|
112 |
+
def get_atla_response(model_name, prompt, system_prompt=None, max_tokens=500, temperature=0.01):
|
113 |
+
"""Get response from HF endpoint for Atla model"""
|
114 |
+
try:
|
115 |
+
headers = {
|
116 |
+
"Accept": "application/json",
|
117 |
+
"Authorization": f"Bearer {hf_api_key}",
|
118 |
+
"Content-Type": "application/json"
|
119 |
+
}
|
120 |
+
|
121 |
+
# Create messages list for chat template
|
122 |
+
messages = []
|
123 |
+
if system_prompt:
|
124 |
+
messages.append({"role": "system", "content": system_prompt})
|
125 |
+
messages.append({"role": "user", "content": prompt})
|
126 |
+
|
127 |
+
# Apply chat template
|
128 |
+
model_id = "AtlaAI/Selene-1-Mini-Llama-3.1-8B"
|
129 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id, token=hf_api_key)
|
130 |
+
formatted_prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
131 |
+
|
132 |
+
payload = {
|
133 |
+
"inputs": formatted_prompt,
|
134 |
+
"parameters": {
|
135 |
+
"max_new_tokens": max_tokens,
|
136 |
+
"return_full_text": False,
|
137 |
+
"temperature": temperature,
|
138 |
+
"seed": 42,
|
139 |
+
"add_generation_prompt": True
|
140 |
+
}
|
141 |
+
}
|
142 |
+
|
143 |
+
response = requests.post(
|
144 |
+
"https://bkp9p28gri93egqh.us-east-1.aws.endpoints.huggingface.cloud",
|
145 |
+
headers=headers,
|
146 |
+
json=payload
|
147 |
+
)
|
148 |
+
return response.json()[0]["generated_text"]
|
149 |
+
except Exception as e:
|
150 |
+
return f"Error with Atla model {model_name}: {str(e)}"
|
151 |
|
152 |
+
def get_flow_judge_response(model_name, prompt, max_tokens=2048, temperature=0.1, top_p=0.95) -> str:
|
153 |
+
"""Get response from Flow Judge"""
|
154 |
+
try:
|
155 |
+
response = requests.post(
|
156 |
+
"https://arena.flow-ai.io/v1/chat/completions",
|
157 |
+
headers={
|
158 |
+
"Content-Type": "application/json",
|
159 |
+
"Authorization": f"Bearer {flow_judge_api_key}"
|
160 |
+
},
|
161 |
+
json={
|
162 |
+
"model": model_name,
|
163 |
+
"messages": [
|
164 |
+
{"role": "user", "content": prompt}
|
165 |
+
],
|
166 |
+
"max_tokens": max_tokens,
|
167 |
+
"temperature": temperature,
|
168 |
+
"top_p": top_p,
|
169 |
+
"stop": None
|
170 |
+
}
|
171 |
+
)
|
172 |
+
response.raise_for_status()
|
173 |
+
return response.json()["choices"][0]['message']['content']
|
174 |
+
except Exception as e:
|
175 |
+
return f"Error with Flow Judge completions model {model_name}: {str(e)}"
|
176 |
|
177 |
+
def get_cohere_response(model_name, prompt, system_prompt=JUDGE_SYSTEM_PROMPT, max_tokens=500, temperature=0):
|
178 |
+
"""Get response from Cohere API"""
|
179 |
+
try:
|
180 |
+
response = cohere_client.chat(
|
181 |
+
model=model_name,
|
182 |
+
messages=[
|
183 |
+
{"role": "system", "content": system_prompt},
|
184 |
+
{"role": "user", "content": prompt}
|
185 |
+
],
|
186 |
+
max_tokens=max_tokens,
|
187 |
+
temperature=temperature
|
188 |
+
)
|
189 |
+
# Extract the text from the content items
|
190 |
+
content_items = response.message.content
|
191 |
+
if isinstance(content_items, list):
|
192 |
+
# Get the text from the first content item
|
193 |
+
return content_items[0].text
|
194 |
+
return str(content_items) # Fallback if it's not a list
|
195 |
+
except Exception as e:
|
196 |
+
return f"Error with Cohere model {model_name}: {str(e)}"
|
197 |
|
198 |
+
def get_salesforce_response(model_name, prompt, system_prompt=None, max_tokens=2048, temperature=0):
|
199 |
+
"""Get response from Salesforce Research API"""
|
200 |
+
try:
|
201 |
+
headers = {
|
202 |
+
'accept': 'application/json',
|
203 |
+
"content-type": "application/json",
|
204 |
+
"X-Api-Key": salesforce_api_key,
|
205 |
+
}
|
206 |
|
207 |
+
# Create messages list
|
208 |
+
messages = []
|
209 |
+
messages.append({"role": "user", "content": prompt})
|
210 |
|
211 |
+
json_data = {
|
212 |
+
"prompts": messages,
|
213 |
+
"temperature": temperature,
|
214 |
+
"top_p": 1,
|
215 |
+
"max_tokens": max_tokens,
|
216 |
+
}
|
217 |
|
218 |
+
response = requests.post(
|
219 |
+
'https://gateway.salesforceresearch.ai/sfr-judge/process',
|
220 |
+
headers=headers,
|
221 |
+
json=json_data
|
222 |
+
)
|
223 |
+
response.raise_for_status()
|
224 |
+
return response.json()['result'][0]
|
225 |
+
except Exception as e:
|
226 |
+
return f"Error with Salesforce model {model_name}: {str(e)}"
|
227 |
|
228 |
+
def get_model_response(
|
229 |
+
model_name,
|
230 |
+
model_info,
|
231 |
+
prompt_data,
|
232 |
+
use_reference=False,
|
233 |
+
max_tokens=500,
|
234 |
+
temperature=0
|
235 |
+
):
|
236 |
+
"""Get response from appropriate API based on model organization"""
|
237 |
+
if not model_info:
|
238 |
+
return "Model not found or unsupported."
|
239 |
|
240 |
+
api_model = model_info["api_model"]
|
241 |
+
organization = model_info["organization"]
|
|
|
|
|
242 |
|
243 |
+
# Determine if model is Prometheus, Atla, Flow Judge, or Salesforce
|
244 |
+
is_prometheus = (organization == "Prometheus")
|
245 |
+
is_atla = (organization == "Atla")
|
246 |
+
is_flow_judge = (organization == "Flow AI")
|
247 |
+
is_salesforce = (organization == "Salesforce")
|
248 |
+
|
249 |
+
# For non-Prometheus/Atla/Flow Judge/Salesforce models, use the Judge system prompt
|
250 |
+
system_prompt = None if (is_prometheus or is_atla or is_flow_judge or is_salesforce) else JUDGE_SYSTEM_PROMPT
|
251 |
|
252 |
+
# Select the appropriate base prompt
|
253 |
+
if is_atla or is_salesforce: # Use same prompt for Atla and Salesforce
|
254 |
+
base_prompt = ATLA_PROMPT_WITH_REFERENCE if use_reference else ATLA_PROMPT
|
255 |
+
elif is_flow_judge:
|
256 |
+
base_prompt = FLOW_JUDGE_PROMPT
|
257 |
+
else:
|
258 |
+
base_prompt = PROMETHEUS_PROMPT_WITH_REFERENCE if use_reference else PROMETHEUS_PROMPT
|
259 |
+
|
260 |
+
# For non-Prometheus/non-Atla/non-Salesforce models, use Prometheus but replace the output format with JSON
|
261 |
+
if not (is_prometheus or is_atla or is_flow_judge or is_salesforce):
|
262 |
+
base_prompt = base_prompt.replace(
|
263 |
+
'3. The output format should look as follows: "Feedback: (write a feedback for criteria) [RESULT] (an integer number between 1 and 5)"',
|
264 |
+
'3. Your output format should strictly adhere to JSON as follows: {{"feedback": "<write feedback>", "result": <numerical score>}}. Ensure the output is valid JSON, without additional formatting or explanations.'
|
265 |
+
)
|
266 |
+
|
267 |
+
try:
|
268 |
+
if not is_flow_judge:
|
269 |
+
# Format the prompt with the provided data
|
270 |
+
final_prompt = base_prompt.format(
|
271 |
+
human_input=prompt_data['human_input'],
|
272 |
+
ai_response=prompt_data['ai_response'],
|
273 |
+
ground_truth_input=prompt_data.get('ground_truth_input', ''),
|
274 |
+
eval_criteria=prompt_data['eval_criteria']
|
275 |
+
)
|
276 |
+
else:
|
277 |
+
human_input = f"<user_input>\n{prompt_data['human_input']}\n</user_input>"
|
278 |
+
ai_response = f"<response>\n{prompt_data['ai_response']}\n</response>"
|
279 |
+
ground_truth = prompt_data.get('ground_truth_input', '')
|
280 |
+
if ground_truth:
|
281 |
+
response_reference = f"<response_reference>\n{ground_truth}\n</response_reference>"
|
282 |
+
else:
|
283 |
+
response_reference = ""
|
284 |
+
|
285 |
+
# For Flow Judge, parse the scoring rubric from eval_criteria
|
286 |
+
eval_criteria_lines = prompt_data['eval_criteria'].split('\n')
|
287 |
+
rubric_lines = [line for line in eval_criteria_lines if line.startswith('Score ')]
|
288 |
+
rubric = '\n'.join(f"- {line}" for line in rubric_lines)
|
289 |
+
|
290 |
+
if response_reference:
|
291 |
+
inputs = human_input + "\n" + response_reference
|
292 |
+
else:
|
293 |
+
inputs = human_input
|
294 |
+
|
295 |
+
final_prompt = base_prompt.format(
|
296 |
+
INPUTS=inputs,
|
297 |
+
OUTPUT=ai_response,
|
298 |
+
EVALUATION_CRITERIA=prompt_data['eval_criteria'],
|
299 |
+
RUBRIC=rubric
|
300 |
+
)
|
301 |
+
|
302 |
+
except KeyError as e:
|
303 |
+
return f"Error formatting prompt: Missing required field {str(e)}"
|
304 |
+
|
305 |
+
try:
|
306 |
+
if organization == "OpenAI":
|
307 |
+
return get_openai_response(
|
308 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature
|
309 |
+
)
|
310 |
+
elif organization == "Anthropic":
|
311 |
+
return get_anthropic_response(
|
312 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature
|
313 |
+
)
|
314 |
+
elif organization == "Prometheus":
|
315 |
+
return get_prometheus_response(
|
316 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature = 0.01
|
317 |
+
)
|
318 |
+
elif organization == "Atla":
|
319 |
+
return get_atla_response(
|
320 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature = 0.01
|
321 |
+
)
|
322 |
+
elif organization == "Cohere":
|
323 |
+
return get_cohere_response(
|
324 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature
|
325 |
+
)
|
326 |
+
elif organization == "Flow AI":
|
327 |
+
return get_flow_judge_response(
|
328 |
+
api_model, final_prompt
|
329 |
+
)
|
330 |
+
elif organization == "Salesforce":
|
331 |
+
response = get_salesforce_response(
|
332 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature
|
333 |
+
)
|
334 |
+
return response
|
335 |
+
else:
|
336 |
+
# All other organizations use Together API
|
337 |
+
return get_together_response(
|
338 |
+
api_model, final_prompt, system_prompt, max_tokens, temperature
|
339 |
+
)
|
340 |
+
except Exception as e:
|
341 |
+
return f"Error with {organization} model {model_name}: {str(e)}"
|
342 |
+
|
343 |
+
def parse_model_response(response):
|
344 |
+
try:
|
345 |
+
# Debug print
|
346 |
+
print(f"Raw model response: {response}")
|
347 |
+
|
348 |
+
# If response is already a dictionary, use it directly
|
349 |
+
if isinstance(response, dict):
|
350 |
+
return str(response.get("result", "N/A")), response.get("feedback", "N/A")
|
351 |
+
|
352 |
+
# First try to parse the entire response as JSON
|
353 |
+
try:
|
354 |
+
data = json.loads(response)
|
355 |
+
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
|
356 |
+
except json.JSONDecodeError:
|
357 |
+
# If that fails, check if this is a Salesforce response (which uses ATLA format)
|
358 |
+
if "**Reasoning:**" in response or "**Result:**" in response:
|
359 |
+
# Use ATLA parser for Salesforce responses
|
360 |
+
return atla_parse_model_response(response)
|
361 |
+
|
362 |
+
# Otherwise try to find JSON within the response
|
363 |
+
json_match = re.search(r"{.*}", response, re.DOTALL)
|
364 |
+
if json_match:
|
365 |
+
data = json.loads(json_match.group(0))
|
366 |
+
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
|
367 |
+
else:
|
368 |
+
return "Error", f"Invalid response format returned - here is the raw model response: {response}"
|
369 |
+
|
370 |
+
except Exception as e:
|
371 |
+
# Debug print for error case
|
372 |
+
print(f"Failed to parse response: {str(e)}")
|
373 |
+
|
374 |
+
# If the error message itself contains valid JSON, try to parse that
|
375 |
+
try:
|
376 |
+
error_json_match = re.search(r"{.*}", str(e), re.DOTALL)
|
377 |
+
if error_json_match:
|
378 |
+
data = json.loads(error_json_match.group(0))
|
379 |
+
return str(data.get("result", "N/A")), data.get("feedback", "N/A")
|
380 |
+
except:
|
381 |
+
pass
|
382 |
+
|
383 |
+
return "Error", f"Failed to parse response: {response}"
|
384 |
+
|
385 |
+
def prometheus_parse_model_response(output):
|
386 |
+
try:
|
387 |
+
print(f"Raw model response: {output}")
|
388 |
+
output = output.strip()
|
389 |
+
|
390 |
+
# Remove "Feedback:" prefix if present (case insensitive)
|
391 |
+
output = re.sub(r'^feedback:\s*', '', output, flags=re.IGNORECASE)
|
392 |
+
|
393 |
+
# New pattern to match [RESULT] X at the beginning
|
394 |
+
begin_result_pattern = r'^\[RESULT\]\s*(\d+)\s*\n*(.*?)$'
|
395 |
+
begin_match = re.search(begin_result_pattern, output, re.DOTALL | re.IGNORECASE)
|
396 |
+
if begin_match:
|
397 |
+
score = int(begin_match.group(1))
|
398 |
+
feedback = begin_match.group(2).strip()
|
399 |
+
return str(score), feedback
|
400 |
+
|
401 |
+
# Existing patterns for end-of-string results...
|
402 |
+
pattern = r"(.*?)\s*\[RESULT\]\s*[\(\[]?(\d+)[\)\]]?"
|
403 |
+
match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
|
404 |
+
if match:
|
405 |
+
feedback = match.group(1).strip()
|
406 |
+
score = int(match.group(2))
|
407 |
+
return str(score), feedback
|
408 |
+
|
409 |
+
# If no match, try to match "... Score: X"
|
410 |
+
pattern = r"(.*?)\s*(?:Score|Result)\s*:\s*[\(\[]?(\d+)[\)\]]?"
|
411 |
+
match = re.search(pattern, output, re.DOTALL | re.IGNORECASE)
|
412 |
+
if match:
|
413 |
+
feedback = match.group(1).strip()
|
414 |
+
score = int(match.group(2))
|
415 |
+
return str(score), feedback
|
416 |
+
|
417 |
+
# Pattern to handle [Score X] at the end
|
418 |
+
pattern = r"(.*?)\s*\[(?:Score|Result)\s*[\(\[]?(\d+)[\)\]]?\]$"
|
419 |
+
match = re.search(pattern, output, re.DOTALL)
|
420 |
+
if match:
|
421 |
+
feedback = match.group(1).strip()
|
422 |
+
score = int(match.group(2))
|
423 |
+
return str(score), feedback
|
424 |
+
|
425 |
+
# Final fallback attempt
|
426 |
+
pattern = r"[\(\[]?(\d+)[\)\]]?\s*\]?$"
|
427 |
+
match = re.search(pattern, output)
|
428 |
+
if match:
|
429 |
+
score = int(match.group(1))
|
430 |
+
feedback = output[:match.start()].rstrip()
|
431 |
+
# Remove any trailing brackets from feedback
|
432 |
+
feedback = re.sub(r'\s*\[[^\]]*$', '', feedback).strip()
|
433 |
+
return str(score), feedback
|
434 |
+
|
435 |
+
return "Error", f"Failed to parse response: {output}"
|
436 |
+
|
437 |
+
except Exception as e:
|
438 |
+
print(f"Failed to parse response: {str(e)}")
|
439 |
+
return "Error", f"Exception during parsing: {str(e)}"
|
440 |
+
|
441 |
+
def atla_parse_model_response(output):
|
442 |
+
"""Parse response from ATLA model"""
|
443 |
+
try:
|
444 |
+
print(f"Raw Atla model response: {output}")
|
445 |
+
output = output.strip()
|
446 |
+
|
447 |
+
# Look for the Reasoning and Result sections
|
448 |
+
reasoning_match = re.search(r'\*\*Reasoning:\*\*(.*?)(?=\*\*Result:|$)', output, re.DOTALL)
|
449 |
+
result_match = re.search(r'\*\*Result:\*\*\s*(\d+)', output)
|
450 |
+
|
451 |
+
if reasoning_match and result_match:
|
452 |
+
feedback = reasoning_match.group(1).strip()
|
453 |
+
score = result_match.group(1)
|
454 |
+
return str(score), feedback
|
455 |
+
|
456 |
+
return "Error", f"Failed to parse ATLA response format: {output}"
|
457 |
+
|
458 |
+
except Exception as e:
|
459 |
+
print(f"Failed to parse ATLA response: {str(e)}")
|
460 |
+
return "Error", f"Exception during parsing: {str(e)}"
|
461 |
+
|
462 |
+
def flow_judge_parse_model_response(output):
|
463 |
+
try:
|
464 |
+
print(f"Raw model response: {output}")
|
465 |
+
# Convert multiple line breaks to single ones and strip whitespace
|
466 |
+
output = re.sub(r'\n{2,}', '\n', output.strip())
|
467 |
+
|
468 |
+
# Compile regex patterns
|
469 |
+
feedback_pattern = re.compile(r"<feedback>\s*(.*?)\s*</feedback>", re.DOTALL)
|
470 |
+
score_pattern = re.compile(r"<score>\s*(\d+)\s*</score>", re.DOTALL)
|
471 |
+
|
472 |
+
feedback_match = feedback_pattern.search(output)
|
473 |
+
score_match = score_pattern.search(output)
|
474 |
+
|
475 |
+
if feedback_match or not score_match:
|
476 |
+
feedback = feedback_match.group(1).strip()
|
477 |
+
score = int(score_match.group(1).strip())
|
478 |
+
return str(score), feedback
|
479 |
+
|
480 |
+
return "Error", f"Failed to parse response: {output}"
|
481 |
+
|
482 |
+
except Exception as e:
|
483 |
+
print(f"Failed to parse response: {str(e)}")
|
484 |
+
return "Error", f"Exception during parsing: {str(e)}"
|