LLMsearch / langchain_websearch.py
Ascol57's picture
Upload 18 files
9afd745 verified
raw
history blame
10.5 kB
import re
import asyncio
import warnings
import logging
import aiohttp
import requests
from bs4 import BeautifulSoup
from langchain.retrievers.document_compressors import DocumentCompressorPipeline
from langchain.retrievers.ensemble import EnsembleRetriever
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.retrievers.document_compressors.embeddings_filter import EmbeddingsFilter
from langchain.retrievers import ContextualCompressionRetriever
from langchain.schema import Document
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_community.document_transformers import EmbeddingsRedundantFilter
from langchain_community.retrievers import BM25Retriever
from transformers import AutoTokenizer, AutoModelForMaskedLM
import optimum.bettertransformer.transformation
try:
from qdrant_client import QdrantClient, models
except ImportError:
qrant_client = None
from .qdrant_retriever import MyQdrantSparseVectorRetriever
from .semantic_chunker import BoundedSemanticChunker
class LangchainCompressor:
def __init__(self, device="cuda", num_results: int = 5, similarity_threshold: float = 0.5, chunk_size: int = 500,
ensemble_weighting: float = 0.5, splade_batch_size: int = 2, keyword_retriever: str = "bm25",
model_cache_dir: str = None, chunking_method: str = "character-based",
chunker_breakpoint_threshold_amount: int = 10):
self.device = device
self.embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2", model_kwargs={"device": device},
cache_folder=model_cache_dir)
if keyword_retriever == "splade":
if "QdrantClient" not in globals():
raise ImportError("Package qrant_client is missing. Please install it using 'pip install qdrant-client")
self.splade_doc_tokenizer = AutoTokenizer.from_pretrained("naver/efficient-splade-VI-BT-large-doc",
cache_dir=model_cache_dir)
self.splade_doc_model = AutoModelForMaskedLM.from_pretrained("naver/efficient-splade-VI-BT-large-doc",
cache_dir=model_cache_dir).to(self.device)
self.splade_query_tokenizer = AutoTokenizer.from_pretrained("naver/efficient-splade-VI-BT-large-query",
cache_dir=model_cache_dir)
self.splade_query_model = AutoModelForMaskedLM.from_pretrained("naver/efficient-splade-VI-BT-large-query",
cache_dir=model_cache_dir).to(self.device)
optimum_logger = optimum.bettertransformer.transformation.logger
original_log_level = optimum_logger.level
# Set the level to 'ERROR' to ignore "The BetterTransformer padding during training warning"
optimum_logger.setLevel(logging.ERROR)
self.splade_doc_model.to_bettertransformer()
self.splade_query_model.to_bettertransformer()
optimum_logger.setLevel(original_log_level)
self.splade_batch_size = splade_batch_size
self.spaces_regex = re.compile(r" {3,}")
self.num_results = num_results
self.similarity_threshold = similarity_threshold
self.chunking_method = chunking_method
self.chunk_size = chunk_size
self.chunker_breakpoint_threshold_amount = chunker_breakpoint_threshold_amount
self.ensemble_weighting = ensemble_weighting
self.keyword_retriever = keyword_retriever
def preprocess_text(self, text: str) -> str:
text = text.replace("\n", " \n")
text = self.spaces_regex.sub(" ", text)
text = text.strip()
return text
def retrieve_documents(self, query: str, url_list: list[str]) -> list[Document]:
yield "Downloading webpages..."
html_url_tupls = zip(asyncio.run(async_fetch_urls(url_list)), url_list)
html_url_tupls = [(content, url) for content, url in html_url_tupls if content is not None]
if not html_url_tupls:
return []
documents = [html_to_plaintext_doc(html, url) for html, url in html_url_tupls]
if self.chunking_method == "semantic":
text_splitter = BoundedSemanticChunker(self.embeddings, breakpoint_threshold_type="percentile",
breakpoint_threshold_amount=self.chunker_breakpoint_threshold_amount,
max_chunk_size=self.chunk_size)
else:
text_splitter = RecursiveCharacterTextSplitter(chunk_size=self.chunk_size, chunk_overlap=10,
separators=["\n\n", "\n", ".", ", ", " ", ""])
yield "Chunking page texts..."
split_docs = text_splitter.split_documents(documents)
yield "Retrieving relevant results..."
# filtered_docs = pipeline_compressor.compress_documents(documents, query)
faiss_retriever = FAISS.from_documents(split_docs, self.embeddings).as_retriever(
search_kwargs={"k": self.num_results}
)
# The sparse keyword retriever is good at finding relevant documents based on keywords,
# while the dense retriever is good at finding relevant documents based on semantic similarity.
if self.keyword_retriever == "bm25":
keyword_retriever = BM25Retriever.from_documents(split_docs, preprocess_func=self.preprocess_text)
keyword_retriever.k = self.num_results
elif self.keyword_retriever == "splade":
client = QdrantClient(location=":memory:")
collection_name = "sparse_collection"
vector_name = "sparse_vector"
client.create_collection(
collection_name,
vectors_config={},
sparse_vectors_config={
vector_name: models.SparseVectorParams(
index=models.SparseIndexParams(
on_disk=False,
)
)
},
)
keyword_retriever = MyQdrantSparseVectorRetriever(
splade_doc_tokenizer=self.splade_doc_tokenizer,
splade_doc_model=self.splade_doc_model,
splade_query_tokenizer=self.splade_query_tokenizer,
splade_query_model=self.splade_query_model,
device=self.device,
client=client,
collection_name=collection_name,
sparse_vector_name=vector_name,
sparse_encoder=None,
batch_size=self.splade_batch_size,
k=self.num_results
)
keyword_retriever.add_documents(split_docs)
else:
raise ValueError("self.keyword_retriever must be one of ('bm25', 'splade')")
redundant_filter = EmbeddingsRedundantFilter(embeddings=self.embeddings)
embeddings_filter = EmbeddingsFilter(embeddings=self.embeddings, k=None,
similarity_threshold=self.similarity_threshold)
pipeline_compressor = DocumentCompressorPipeline(
transformers=[redundant_filter, embeddings_filter]
)
compression_retriever = ContextualCompressionRetriever(base_compressor=pipeline_compressor,
base_retriever=faiss_retriever)
ensemble_retriever = EnsembleRetriever(
retrievers=[compression_retriever, keyword_retriever],
weights=[self.ensemble_weighting, 1 - self.ensemble_weighting]
)
compressed_docs = ensemble_retriever.invoke(query)
# Ensemble may return more than "num_results" results, so cut off excess ones
return compressed_docs[:self.num_results]
async def async_download_html(url, headers):
async with aiohttp.ClientSession(headers=headers, timeout=aiohttp.ClientTimeout(10)) as session:
try:
resp = await session.get(url)
return await resp.text()
except UnicodeDecodeError:
print(
f"LLM_Web_search | {url} generated an exception: Expected content type text/html. Got {resp.headers['Content-Type']}.")
except TimeoutError as exc:
print('LLM_Web_search | %r did not load in time' % url)
except Exception as exc:
print('LLM_Web_search | %r generated an exception: %s' % (url, exc))
return None
async def async_fetch_urls(urls):
headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:120.0) Gecko/20100101 Firefox/120.0",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5"}
webpages = await asyncio.gather(*[(async_download_html(url, headers)) for url in urls])
return webpages
def docs_to_pretty_str(docs) -> str:
ret_str = ""
for i, doc in enumerate(docs):
ret_str += f"Result {i+1}:\n"
ret_str += f"{doc.page_content}\n"
ret_str += f"Source URL: {doc.metadata['source']}\n\n"
return ret_str
def download_html(url: str) -> bytes:
headers = {"User-Agent": "Mozilla/5.0 (X11; Linux x86_64; rv:120.0) Gecko/20100101 Firefox/120.0",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/avif,image/webp,*/*;q=0.8",
"Accept-Language": "en-US,en;q=0.5"}
response = requests.get(url, headers=headers, verify=True, timeout=8)
response.raise_for_status()
content_type = response.headers.get("Content-Type", "")
if not content_type.startswith("text/html"):
raise ValueError(f"Expected content type text/html. Got {content_type}.")
return response.content
def html_to_plaintext_doc(html_text: str or bytes, url: str) -> Document:
with warnings.catch_warnings(action="ignore"):
soup = BeautifulSoup(html_text, features="lxml")
for script in soup(["script", "style"]):
script.extract()
strings = '\n'.join([s.strip() for s in soup.stripped_strings])
webpage_document = Document(page_content=strings, metadata={"source": url})
return webpage_document