Artples commited on
Commit
bde3c6d
·
verified ·
1 Parent(s): 920a49b

Delete Kopie_von_⚡_AutoQuant.ipynb

Browse files
Files changed (1) hide show
  1. Kopie_von_⚡_AutoQuant.ipynb +0 -355
Kopie_von_⚡_AutoQuant.ipynb DELETED
@@ -1,355 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "cell_type": "code",
5
- "execution_count": null,
6
- "metadata": {
7
- "cellView": "form",
8
- "id": "fD24jJxq7t3k"
9
- },
10
- "outputs": [],
11
- "source": [
12
- "# @title # ⚡ AutoQuant\n",
13
- "\n",
14
- "# @markdown > 🗣️ [Large Language Model Course](https://github.com/mlabonne/llm-course)\n",
15
- "\n",
16
- "# @markdown ❤️ Created by [@maximelabonne](https://twitter.com/maximelabonne).\n",
17
- "\n",
18
- "# @markdown **Usage:** Download the model by **running this cell** and then run the cells corresponding to your quantization methods of interest.\n",
19
- "\n",
20
- "# @markdown To quantize a 7B model, GGUF only needs a T4 GPU, while the other methods require an A100 GPU.\n",
21
- "\n",
22
- "# @markdown *See also the [AutoQuantize](https://colab.research.google.com/drive/1Li3USnl3yoYctqJLtYux3LAIy4Bnnv3J) notebook from zainulabideen.*\n",
23
- "\n",
24
- "# @markdown ---\n",
25
- "\n",
26
- "# @markdown ## 🤗 Download model (required)\n",
27
- "# @markdown `HF_TOKEN` corresponds to the name of the secret that stores your [Hugging Face access token](https://huggingface.co/settings/tokens) in Colab.\n",
28
- "\n",
29
- "MODEL_ID = \"mlabonne/Zebrafish-7B\" # @param {type:\"string\"}\n",
30
- "USERNAME = \"Artples\" # @param {type:\"string\"}\n",
31
- "HF_TOKEN = \"HF_TOKEN\" # @param {type:\"string\"}\n",
32
- "\n",
33
- "MODEL_NAME = MODEL_ID.split('/')[-1]\n",
34
- "\n",
35
- "# Download model\n",
36
- "!git lfs install\n",
37
- "!git clone https://huggingface.co/{MODEL_ID}\n",
38
- "!pip install -q huggingface_hub\n",
39
- "\n",
40
- "from huggingface_hub import create_repo, HfApi, ModelCard\n",
41
- "from google.colab import userdata, runtime\n",
42
- "\n",
43
- "# Defined in the secrets tab in Google Colab\n",
44
- "hf_token = userdata.get(HF_TOKEN)\n",
45
- "api = HfApi()"
46
- ]
47
- },
48
- {
49
- "cell_type": "code",
50
- "execution_count": null,
51
- "metadata": {
52
- "id": "NL0yGhbe3EFk"
53
- },
54
- "outputs": [],
55
- "source": [
56
- "# @title ## 🧩 GGUF\n",
57
- "\n",
58
- "# @markdown Quantization methods: `q2_k`, `q3_k_l`, `q3_k_m`, `q3_k_s`, `q4_0`, `q4_1`, `q4_k_m`, `q4_k_s`, `q5_0`, `q5_1`, `q5_k_m`, `q5_k_s`, `q6_k`, `q8_0`\n",
59
- "\n",
60
- "# @markdown Learn more about GGUF and quantization methods in [this article](https://mlabonne.github.io/blog/posts/Quantize_Llama_2_models_using_ggml.html).\n",
61
- "\n",
62
- "QUANTIZATION_FORMAT = \"q5_k_m\" # @param {type:\"string\"}\n",
63
- "QUANTIZATION_METHODS = QUANTIZATION_FORMAT.replace(\" \", \"\").split(\",\")\n",
64
- "\n",
65
- "# Install llama.cpp\n",
66
- "!git clone https://github.com/ggerganov/llama.cpp\n",
67
- "!cd llama.cpp && git pull && make clean && LLAMA_CUBLAS=1 make\n",
68
- "!pip install -r llama.cpp/requirements.txt\n",
69
- "\n",
70
- "# Convert to fp16\n",
71
- "fp16 = f\"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin\"\n",
72
- "!python llama.cpp/convert.py {MODEL_NAME} --outtype f16 --outfile {fp16}\n",
73
- "\n",
74
- "# Quantize the model for each method in the QUANTIZATION_METHODS list\n",
75
- "for method in QUANTIZATION_METHODS:\n",
76
- " qtype = f\"{MODEL_NAME}/{MODEL_NAME.lower()}.{method.upper()}.gguf\"\n",
77
- " !./llama.cpp/quantize {fp16} {qtype} {method}\n",
78
- "\n",
79
- "# Create model card\n",
80
- "card = ModelCard.load(MODEL_ID)\n",
81
- "card.data.tags.append(\"autoquant\")\n",
82
- "card.data.tags.append(\"gguf\")\n",
83
- "card.save(f'{MODEL_NAME}/README.md')\n",
84
- "\n",
85
- "# Upload model\n",
86
- "create_repo(\n",
87
- " repo_id = f\"{USERNAME}/{MODEL_NAME}-GGUF\",\n",
88
- " repo_type=\"model\",\n",
89
- " exist_ok=True,\n",
90
- " token=hf_token\n",
91
- ")\n",
92
- "api.upload_folder(\n",
93
- " folder_path=MODEL_NAME,\n",
94
- " repo_id=f\"{USERNAME}/{MODEL_NAME}-GGUF\",\n",
95
- " allow_patterns=[\"*.gguf\",\"$.md\"],\n",
96
- " token=hf_token\n",
97
- ")"
98
- ]
99
- },
100
- {
101
- "cell_type": "code",
102
- "execution_count": null,
103
- "metadata": {
104
- "cellView": "form",
105
- "id": "OE_R3AXG5Y-F"
106
- },
107
- "outputs": [],
108
- "source": [
109
- "# @title ## 🧠 GPTQ\n",
110
- "\n",
111
- "# @markdown Learn more about the GPTQ algorithm in [this article](https://mlabonne.github.io/blog/posts/4_bit_Quantization_with_GPTQ.html).\n",
112
- "\n",
113
- "# !pip install auto-gptq optimum accelerate\n",
114
- "\n",
115
- "# from transformers import AutoModelForCausalLM, AutoTokenizer, GPTQConfig\n",
116
- "\n",
117
- "# BITS = 4 # @param {type:\"integer\"}\n",
118
- "# GROUP_SIZE = 128 # @param {type:\"integer\"}\n",
119
- "# DAMP_PERCENT = 0.1 # @param {type:\"number\"}\n",
120
- "\n",
121
- "# # Quantize model\n",
122
- "# tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)\n",
123
- "# quantization_config = GPTQConfig(bits=BITS, dataset=\"c4\", tokenizer=tokenizer, damp_percent=DAMP_PERCENT)\n",
124
- "# model = AutoModelForCausalLM.from_pretrained(MODEL_ID, device_map=\"auto\", quantization_config=quantization_config, low_cpu_mem_usage=True)\n",
125
- "\n",
126
- "# Save model and tokenizer\n",
127
- "save_folder = MODEL_ID + \"-GPTQ\"\n",
128
- "model.save_pretrained(save_folder, use_safetensors=True)\n",
129
- "tokenizer.save_pretrained(save_folder)\n",
130
- "\n",
131
- "# Create model card\n",
132
- "card = ModelCard.load(MODEL_ID)\n",
133
- "card.data.tags.append(\"autoquant\")\n",
134
- "card.data.tags.append(\"gptq\")\n",
135
- "card.save(f'{save_folder}/README.md')\n",
136
- "\n",
137
- "# Upload model\n",
138
- "create_repo(\n",
139
- " repo_id = f\"{USERNAME}/{MODEL_NAME}-GPTQ\",\n",
140
- " repo_type=\"model\",\n",
141
- " exist_ok=True,\n",
142
- " token=hf_token\n",
143
- ")\n",
144
- "api.upload_folder(\n",
145
- " folder_path=save_folder,\n",
146
- " repo_id=f\"{USERNAME}/{MODEL_NAME}-GPTQ\",\n",
147
- " token=hf_token\n",
148
- ")"
149
- ]
150
- },
151
- {
152
- "cell_type": "code",
153
- "execution_count": null,
154
- "metadata": {
155
- "cellView": "form",
156
- "id": "ZC9Nsr9u5WhN"
157
- },
158
- "outputs": [],
159
- "source": [
160
- "# @title # 🦙 ExLlamaV2\n",
161
- "\n",
162
- "# @markdown Learn more about ExLlamaV2 in [this article](https://mlabonne.github.io/blog/posts/ExLlamaV2_The_Fastest_Library_to_Run%C2%A0LLMs.html).\n",
163
- "\n",
164
- "BPW = 5.0 # @param {type:\"number\"}\n",
165
- "\n",
166
- "# Install ExLLamaV2\n",
167
- "!git clone https://github.com/turboderp/exllamav2\n",
168
- "!pip install -e exllamav2\n",
169
- "!cp {MODEL_NAME} base_model\n",
170
- "!rm base_mode/*.bin\n",
171
- "\n",
172
- "# Download dataset\n",
173
- "!wget https://huggingface.co/datasets/wikitext/resolve/9a9e482b5987f9d25b3a9b2883fc6cc9fd8071b3/wikitext-103-v1/wikitext-test.parquet\n",
174
- "\n",
175
- "# Quantize model\n",
176
- "save_folder = MODEL_ID + \"-EXL2\"\n",
177
- "!mkdir {save_folder}\n",
178
- "!python exllamav2/convert.py \\\n",
179
- " -i base_model \\\n",
180
- " -o {save_folder} \\\n",
181
- " -c wikitext-test.parquet \\\n",
182
- " -b {BPW}\n",
183
- "\n",
184
- "# Copy files\n",
185
- "!rm -rf quant/out_tensor\n",
186
- "!rsync -av --exclude='*.safetensors' --exclude='.*' ./base_model/ ./{save_folder}/\n",
187
- "\n",
188
- "# Create model card\n",
189
- "card = ModelCard.load(MODEL_ID)\n",
190
- "card.data.tags.append(\"autoquant\")\n",
191
- "card.data.tags.append(\"exl2\")\n",
192
- "card.save(f'{save_folder}/README.md')\n",
193
- "\n",
194
- "# Upload model\n",
195
- "create_repo(\n",
196
- " repo_id = f\"{USERNAME}/{MODEL_NAME}-{BPW:.1f}bpw-exl2\",\n",
197
- " repo_type=\"model\",\n",
198
- " exist_ok=True,\n",
199
- " token=hf_token\n",
200
- ")\n",
201
- "api.upload_folder(\n",
202
- " folder_path=save_folder,\n",
203
- " repo_id=f\"{USERNAME}/{MODEL_NAME}-{BPW:.1f}bpw-exl2\",\n",
204
- " token=hf_token\n",
205
- ")"
206
- ]
207
- },
208
- {
209
- "cell_type": "code",
210
- "execution_count": null,
211
- "metadata": {
212
- "cellView": "form",
213
- "id": "MyyUO2Fj3WHt"
214
- },
215
- "outputs": [],
216
- "source": [
217
- "# @title ## ⚖️ AWQ\n",
218
- "\n",
219
- "# @markdown See the [AutoAWQ repository](https://github.com/casper-hansen/AutoAWQ) for more information.\n",
220
- "\n",
221
- "# Install AutoAWQ\n",
222
- "!pip install -qqq -U https://github.com/casper-hansen/AutoAWQ/releases/download/v0.2.4/autoawq-0.2.4+cu118-cp310-cp310-linux_x86_64.whl\n",
223
- "!pip install zstandard\n",
224
- "\n",
225
- "from awq import AutoAWQForCausalLM\n",
226
- "from transformers import AutoTokenizer\n",
227
- "\n",
228
- "BITS = 4 # @param {type: \"integer\"}\n",
229
- "GROUP_SIZE = 128 # @param {type: \"integer\"}\n",
230
- "VERSION = \"GEMM\" # @param {type: \"string\"}\n",
231
- "ZERO_POINT = True # @param {type: \"boolean\"}\n",
232
- "\n",
233
- "quant_config = {\n",
234
- " \"w_bit\": BITS,\n",
235
- " \"q_group_size\": GROUP_SIZE,\n",
236
- " \"version\": VERSION,\n",
237
- " \"zero_point\": ZERO_POINT\n",
238
- "}\n",
239
- "save_folder = MODEL_NAME + \"-AWQ\"\n",
240
- "\n",
241
- "# Quantize model\n",
242
- "model = AutoAWQForCausalLM.from_pretrained(MODEL_NAME, safetensors=True, low_cpu_mem_usage=True)\n",
243
- "tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, trust_remote_code=True)\n",
244
- "model.quantize(tokenizer, quant_config=quant_config)\n",
245
- "\n",
246
- "# Save model and tokenizer\n",
247
- "model.save_quantized(save_folder)\n",
248
- "tokenizer.save_pretrained(save_folder)\n",
249
- "\n",
250
- "# Create model card\n",
251
- "card = ModelCard.load(MODEL_ID)\n",
252
- "card.data.tags.append(\"autoquant\")\n",
253
- "card.data.tags.append(\"awq\")\n",
254
- "card.save(f'{save_folder}/README.md')\n",
255
- "\n",
256
- "# Upload model\n",
257
- "create_repo(\n",
258
- " repo_id = f\"{USERNAME}/{MODEL_NAME}-AWQ\",\n",
259
- " repo_type=\"model\",\n",
260
- " exist_ok=True,\n",
261
- " token=hf_token\n",
262
- ")\n",
263
- "api.upload_folder(\n",
264
- " folder_path=save_folder,\n",
265
- " repo_id=f\"{USERNAME}/{MODEL_NAME}-AWQ\",\n",
266
- " token=hf_token\n",
267
- ")"
268
- ]
269
- },
270
- {
271
- "cell_type": "code",
272
- "execution_count": null,
273
- "metadata": {
274
- "cellView": "form",
275
- "id": "iEhLsUjcnNR7"
276
- },
277
- "outputs": [],
278
- "source": [
279
- "# @title ## 🐘 HQQ\n",
280
- "\n",
281
- "# @markdown See the official [HQQ repository](https://github.com/mobiusml/hqq) for more information.\n",
282
- "\n",
283
- "!git clone https://github.com/mobiusml/hqq.git\n",
284
- "!pip install -e hqq\n",
285
- "!python hqq/kernels/setup_cuda.py install\n",
286
- "!pip install flash-attn --no-build-isolation\n",
287
- "!pip install transformers --upgrade\n",
288
- "!num_threads=8; OMP_NUM_THREADS=$num_threads CUDA_VISIBLE_DEVICES=0\n",
289
- "\n",
290
- "import torch\n",
291
- "from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer\n",
292
- "from hqq.models.hf.base import AutoHQQHFModel\n",
293
- "from hqq.core.quantize import *\n",
294
- "\n",
295
- "BITS = 2 # @param {type:\"integer\"}\n",
296
- "GROUP_SIZE = 128 # @param {type:\"integer\"}\n",
297
- "\n",
298
- "# Quant config\n",
299
- "quant_config = BaseQuantizeConfig(\n",
300
- " nbits=BITS,\n",
301
- " group_size=GROUP_SIZE\n",
302
- ")\n",
303
- "\n",
304
- "# Quantize model\n",
305
- "model = HQQModelForCausalLM.from_pretrained(\n",
306
- " MODEL_ID,\n",
307
- " cache_dir=\".\",\n",
308
- " attn_implementation=\"flash_attention_2\"\n",
309
- ")\n",
310
- "tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)\n",
311
- "model.quantize_model(quant_config=quant_config, device='cuda')\n",
312
- "\n",
313
- "# Save model and tokenizer\n",
314
- "save_folder = MODEL_ID + \"-HQQ\"\n",
315
- "model.save_quantized(save_folder)\n",
316
- "tokenizer.save_pretrained(save_folder)\n",
317
- "\n",
318
- "# Create model card\n",
319
- "card = ModelCard.load(MODEL_ID)\n",
320
- "card.data.tags.append(\"autoquant\")\n",
321
- "card.data.tags.append(\"hqq\")\n",
322
- "card.save(f'{save_folder}/README.md')\n",
323
- "\n",
324
- "# Upload model\n",
325
- "create_repo(\n",
326
- " repo_id = f\"{USERNAME}/{MODEL_NAME}-{BITS}bit-HQQ\",\n",
327
- " repo_type=\"model\",\n",
328
- " exist_ok=True,\n",
329
- " token=hf_token\n",
330
- ")\n",
331
- "api.upload_folder(\n",
332
- " folder_path=save_folder,\n",
333
- " repo_id=f\"{USERNAME}/{MODEL_NAME}-{BITS}bit-HQQ\",\n",
334
- " token=hf_token\n",
335
- ")"
336
- ]
337
- }
338
- ],
339
- "metadata": {
340
- "accelerator": "GPU",
341
- "colab": {
342
- "gpuType": "T4",
343
- "provenance": []
344
- },
345
- "kernelspec": {
346
- "display_name": "Python 3",
347
- "name": "python3"
348
- },
349
- "language_info": {
350
- "name": "python"
351
- }
352
- },
353
- "nbformat": 4,
354
- "nbformat_minor": 0
355
- }