import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# L-MChat
This Space demonstrates [L-MChat](https://huggingface.co./collections/Artples/l-mchat-663265a8351231c428318a8f) by L-AI.
To select the Model that you want to use please go to the Adavanced Inputs, the Quality-Model (L-MChat-7b) is activated by default.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n
Running on CPU! This demo does not work on CPU.
" model_dict = { "Fast-Model": "Artples/L-MChat-Small", "Quality-Model": "Artples/L-MChat-7b" } @spaces.GPU(enable_queue=True, duration=90) def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, model_choice: str, max_new_tokens: int = 1024, temperature: float = 0.1, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: model_id = model_dict[model_choice] model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False conversation = [] if system_prompt: conversation.append({"role": "system", "content": system_prompt}) for user, assistant in chat_history: conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}]) conversation.append({"role": "user", "content": message}) input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True) if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) chat_interface = gr.ChatInterface( theme='ehristoforu/RE_Theme', fn=generate, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Radio(["Fast-Model", "Quality-Model"], label="Model", value="Quality-Model"), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ ["Hello there! How are you doing?"], ["Can you explain briefly to me what is the Python programming language?"], ["Explain the plot of Cinderella in a sentence."], ["How many hours does it take a man to eat a Helicopter?"], ["Write a 100-word article on 'Benefits of Open-Source in AI research'"], ], ) with gr.Blocks(css="style.css") as demo: gr.Markdown(DESCRIPTION) chat_interface.render() if __name__ == "__main__": demo.queue(max_size=20).launch()