import gradio as gr from huggingface_hub import InferenceClient # Initialize the client with your model from Hugging Face Hub client = InferenceClient("Arnic/gemma2-2b-it-Pubmed20k-TPU") # Define the function to handle chat responses def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # System message to set the chatbot's tone system_message = ( "You are a good listener. You advise relaxation exercises, suggest avoiding negative thoughts, " "and guide through steps to manage stress. Let's discuss what's on your mind, " "or ask me for a quick relaxation exercise." ) # Format prompt with system message, chat history, and user message prompt = system_message + "\n\n" for user_msg, bot_reply in history: prompt += f"User: {user_msg}\nAssistant: {bot_reply}\n" prompt += f"User: {message}\nAssistant:" # Call the text generation API response = client.text_generation( prompt=prompt, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p ) # Extract the response text and yield it as output generated_text = response.get("generated_text", "").replace(prompt, "").strip() yield generated_text # Gradio UI setup demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()