Spaces:
Runtime error
Runtime error
Commit
·
e628a3b
1
Parent(s):
cd6cde5
Create vtoonify.py
Browse files- vtoonify.py +286 -0
vtoonify.py
ADDED
@@ -0,0 +1,286 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import math
|
4 |
+
from torch import nn
|
5 |
+
from model.stylegan.model import ConvLayer, EqualLinear, Generator, ResBlock
|
6 |
+
from model.dualstylegan import AdaptiveInstanceNorm, AdaResBlock, DualStyleGAN
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
# IC-GAN: stylegan discriminator
|
10 |
+
class ConditionalDiscriminator(nn.Module):
|
11 |
+
def __init__(self, size, channel_multiplier=2, blur_kernel=[1, 3, 3, 1], use_condition=False, style_num=None):
|
12 |
+
super().__init__()
|
13 |
+
|
14 |
+
channels = {
|
15 |
+
4: 512,
|
16 |
+
8: 512,
|
17 |
+
16: 512,
|
18 |
+
32: 512,
|
19 |
+
64: 256 * channel_multiplier,
|
20 |
+
128: 128 * channel_multiplier,
|
21 |
+
256: 64 * channel_multiplier,
|
22 |
+
512: 32 * channel_multiplier,
|
23 |
+
1024: 16 * channel_multiplier,
|
24 |
+
}
|
25 |
+
|
26 |
+
convs = [ConvLayer(3, channels[size], 1)]
|
27 |
+
|
28 |
+
log_size = int(math.log(size, 2))
|
29 |
+
|
30 |
+
in_channel = channels[size]
|
31 |
+
|
32 |
+
for i in range(log_size, 2, -1):
|
33 |
+
out_channel = channels[2 ** (i - 1)]
|
34 |
+
|
35 |
+
convs.append(ResBlock(in_channel, out_channel, blur_kernel))
|
36 |
+
|
37 |
+
in_channel = out_channel
|
38 |
+
|
39 |
+
self.convs = nn.Sequential(*convs)
|
40 |
+
|
41 |
+
self.stddev_group = 4
|
42 |
+
self.stddev_feat = 1
|
43 |
+
self.use_condition = use_condition
|
44 |
+
|
45 |
+
if self.use_condition:
|
46 |
+
self.condition_dim = 128
|
47 |
+
# map style degree to 64-dimensional vector
|
48 |
+
self.label_mapper = nn.Sequential(
|
49 |
+
nn.Linear(1, 64),
|
50 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
51 |
+
nn.Linear(64, 64),
|
52 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
53 |
+
nn.Linear(64, self.condition_dim//2),
|
54 |
+
)
|
55 |
+
# map style code index to 64-dimensional vector
|
56 |
+
self.style_mapper = nn.Embedding(style_num, self.condition_dim-self.condition_dim//2)
|
57 |
+
else:
|
58 |
+
self.condition_dim = 1
|
59 |
+
|
60 |
+
self.final_conv = ConvLayer(in_channel + 1, channels[4], 3)
|
61 |
+
self.final_linear = nn.Sequential(
|
62 |
+
EqualLinear(channels[4] * 4 * 4, channels[4], activation="fused_lrelu"),
|
63 |
+
EqualLinear(channels[4], self.condition_dim),
|
64 |
+
)
|
65 |
+
|
66 |
+
def forward(self, input, degree_label=None, style_ind=None):
|
67 |
+
out = self.convs(input)
|
68 |
+
|
69 |
+
batch, channel, height, width = out.shape
|
70 |
+
group = min(batch, self.stddev_group)
|
71 |
+
stddev = out.view(
|
72 |
+
group, -1, self.stddev_feat, channel // self.stddev_feat, height, width
|
73 |
+
)
|
74 |
+
stddev = torch.sqrt(stddev.var(0, unbiased=False) + 1e-8)
|
75 |
+
stddev = stddev.mean([2, 3, 4], keepdims=True).squeeze(2)
|
76 |
+
stddev = stddev.repeat(group, 1, height, width)
|
77 |
+
out = torch.cat([out, stddev], 1)
|
78 |
+
|
79 |
+
out = self.final_conv(out)
|
80 |
+
out = out.view(batch, -1)
|
81 |
+
|
82 |
+
if self.use_condition:
|
83 |
+
h = self.final_linear(out)
|
84 |
+
condition = torch.cat((self.label_mapper(degree_label), self.style_mapper(style_ind)), dim=1)
|
85 |
+
out = (h * condition).sum(dim=1, keepdim=True) * (1 / np.sqrt(self.condition_dim))
|
86 |
+
else:
|
87 |
+
out = self.final_linear(out)
|
88 |
+
|
89 |
+
return out
|
90 |
+
|
91 |
+
|
92 |
+
class VToonifyResBlock(nn.Module):
|
93 |
+
def __init__(self, fin):
|
94 |
+
super().__init__()
|
95 |
+
|
96 |
+
self.conv = nn.Conv2d(fin, fin, 3, 1, 1)
|
97 |
+
self.conv2 = nn.Conv2d(fin, fin, 3, 1, 1)
|
98 |
+
self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
out = self.lrelu(self.conv(x))
|
102 |
+
out = self.lrelu(self.conv2(out))
|
103 |
+
out = (out + x) / math.sqrt(2)
|
104 |
+
return out
|
105 |
+
|
106 |
+
class Fusion(nn.Module):
|
107 |
+
def __init__(self, in_channels, skip_channels, out_channels):
|
108 |
+
super().__init__()
|
109 |
+
|
110 |
+
# create conv layers
|
111 |
+
self.conv = nn.Conv2d(in_channels + skip_channels, out_channels, 3, 1, 1, bias=True)
|
112 |
+
self.norm = AdaptiveInstanceNorm(in_channels + skip_channels, 128)
|
113 |
+
self.conv2 = nn.Conv2d(in_channels + skip_channels, 1, 3, 1, 1, bias=True)
|
114 |
+
#'''
|
115 |
+
self.linear = nn.Sequential(
|
116 |
+
nn.Linear(1, 64),
|
117 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
118 |
+
nn.Linear(64, 128),
|
119 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True)
|
120 |
+
)
|
121 |
+
|
122 |
+
def forward(self, f_G, f_E, d_s=1):
|
123 |
+
# label of style degree
|
124 |
+
label = self.linear(torch.zeros(f_G.size(0),1).to(f_G.device) + d_s)
|
125 |
+
out = torch.cat([f_G, abs(f_G-f_E)], dim=1)
|
126 |
+
m_E = (F.relu(self.conv2(self.norm(out, label)))).tanh()
|
127 |
+
f_out = self.conv(torch.cat([f_G, f_E * m_E], dim=1))
|
128 |
+
return f_out, m_E
|
129 |
+
|
130 |
+
class VToonify(nn.Module):
|
131 |
+
def __init__(self,
|
132 |
+
in_size=256,
|
133 |
+
out_size=1024,
|
134 |
+
img_channels=3,
|
135 |
+
style_channels=512,
|
136 |
+
num_mlps=8,
|
137 |
+
channel_multiplier=2,
|
138 |
+
num_res_layers=6,
|
139 |
+
backbone = 'dualstylegan',
|
140 |
+
):
|
141 |
+
|
142 |
+
super().__init__()
|
143 |
+
|
144 |
+
self.backbone = backbone
|
145 |
+
if self.backbone == 'dualstylegan':
|
146 |
+
# DualStyleGAN, with weights being fixed
|
147 |
+
self.generator = DualStyleGAN(out_size, style_channels, num_mlps, channel_multiplier)
|
148 |
+
else:
|
149 |
+
# StyleGANv2, with weights being fixed
|
150 |
+
self.generator = Generator(out_size, style_channels, num_mlps, channel_multiplier)
|
151 |
+
|
152 |
+
self.in_size = in_size
|
153 |
+
self.style_channels = style_channels
|
154 |
+
channels = self.generator.channels
|
155 |
+
|
156 |
+
# encoder
|
157 |
+
num_styles = int(np.log2(out_size)) * 2 - 2
|
158 |
+
encoder_res = [2**i for i in range(int(np.log2(in_size)), 4, -1)]
|
159 |
+
self.encoder = nn.ModuleList()
|
160 |
+
self.encoder.append(
|
161 |
+
nn.Sequential(
|
162 |
+
nn.Conv2d(img_channels+19, 32, 3, 1, 1, bias=True),
|
163 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
164 |
+
nn.Conv2d(32, channels[in_size], 3, 1, 1, bias=True),
|
165 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True)))
|
166 |
+
|
167 |
+
for res in encoder_res:
|
168 |
+
in_channels = channels[res]
|
169 |
+
if res > 32:
|
170 |
+
out_channels = channels[res // 2]
|
171 |
+
block = nn.Sequential(
|
172 |
+
nn.Conv2d(in_channels, out_channels, 3, 2, 1, bias=True),
|
173 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True),
|
174 |
+
nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=True),
|
175 |
+
nn.LeakyReLU(negative_slope=0.2, inplace=True))
|
176 |
+
self.encoder.append(block)
|
177 |
+
else:
|
178 |
+
layers = []
|
179 |
+
for _ in range(num_res_layers):
|
180 |
+
layers.append(VToonifyResBlock(in_channels))
|
181 |
+
self.encoder.append(nn.Sequential(*layers))
|
182 |
+
block = nn.Conv2d(in_channels, img_channels, 1, 1, 0, bias=True)
|
183 |
+
self.encoder.append(block)
|
184 |
+
|
185 |
+
# trainable fusion module
|
186 |
+
self.fusion_out = nn.ModuleList()
|
187 |
+
self.fusion_skip = nn.ModuleList()
|
188 |
+
for res in encoder_res[::-1]:
|
189 |
+
num_channels = channels[res]
|
190 |
+
if self.backbone == 'dualstylegan':
|
191 |
+
self.fusion_out.append(
|
192 |
+
Fusion(num_channels, num_channels, num_channels))
|
193 |
+
else:
|
194 |
+
self.fusion_out.append(
|
195 |
+
nn.Conv2d(num_channels * 2, num_channels, 3, 1, 1, bias=True))
|
196 |
+
|
197 |
+
self.fusion_skip.append(
|
198 |
+
nn.Conv2d(num_channels + 3, 3, 3, 1, 1, bias=True))
|
199 |
+
|
200 |
+
# Modified ModRes blocks in DualStyleGAN, with weights being fixed
|
201 |
+
if self.backbone == 'dualstylegan':
|
202 |
+
self.res = nn.ModuleList()
|
203 |
+
self.res.append(AdaResBlock(self.generator.channels[2 ** 2])) # for conv1, no use in this model
|
204 |
+
for i in range(3, 6):
|
205 |
+
out_channel = self.generator.channels[2 ** i]
|
206 |
+
self.res.append(AdaResBlock(out_channel, dilation=2**(5-i)))
|
207 |
+
self.res.append(AdaResBlock(out_channel, dilation=2**(5-i)))
|
208 |
+
|
209 |
+
|
210 |
+
def forward(self, x, style, d_s=None, return_mask=False, return_feat=False):
|
211 |
+
# map style to W+ space
|
212 |
+
if style is not None and style.ndim < 3:
|
213 |
+
if self.backbone == 'dualstylegan':
|
214 |
+
resstyles = self.generator.style(style).unsqueeze(1).repeat(1, self.generator.n_latent, 1)
|
215 |
+
adastyles = style.unsqueeze(1).repeat(1, self.generator.n_latent, 1)
|
216 |
+
elif style is not None:
|
217 |
+
nB, nL, nD = style.shape
|
218 |
+
if self.backbone == 'dualstylegan':
|
219 |
+
resstyles = self.generator.style(style.reshape(nB*nL, nD)).reshape(nB, nL, nD)
|
220 |
+
adastyles = style
|
221 |
+
if self.backbone == 'dualstylegan':
|
222 |
+
adastyles = adastyles.clone()
|
223 |
+
for i in range(7, self.generator.n_latent):
|
224 |
+
adastyles[:, i] = self.generator.res[i](adastyles[:, i])
|
225 |
+
|
226 |
+
# obtain multi-scale content features
|
227 |
+
feat = x
|
228 |
+
encoder_features = []
|
229 |
+
# downsampling conv parts of E
|
230 |
+
for block in self.encoder[:-2]:
|
231 |
+
feat = block(feat)
|
232 |
+
encoder_features.append(feat)
|
233 |
+
encoder_features = encoder_features[::-1]
|
234 |
+
# Resblocks in E
|
235 |
+
for ii, block in enumerate(self.encoder[-2]):
|
236 |
+
feat = block(feat)
|
237 |
+
# adjust Resblocks with ModRes blocks
|
238 |
+
if self.backbone == 'dualstylegan':
|
239 |
+
feat = self.res[ii+1](feat, resstyles[:, ii+1], d_s)
|
240 |
+
# the last-layer feature of E (inputs of backbone)
|
241 |
+
out = feat
|
242 |
+
skip = self.encoder[-1](feat)
|
243 |
+
if return_feat:
|
244 |
+
return out, skip
|
245 |
+
|
246 |
+
# 32x32 ---> higher res
|
247 |
+
_index = 1
|
248 |
+
m_Es = []
|
249 |
+
for conv1, conv2, to_rgb in zip(
|
250 |
+
self.stylegan().convs[6::2], self.stylegan().convs[7::2], self.stylegan().to_rgbs[3:]):
|
251 |
+
|
252 |
+
# pass the mid-layer features of E to the corresponding resolution layers of G
|
253 |
+
if 2 ** (5+((_index-1)//2)) <= self.in_size:
|
254 |
+
fusion_index = (_index - 1) // 2
|
255 |
+
f_E = encoder_features[fusion_index]
|
256 |
+
|
257 |
+
if self.backbone == 'dualstylegan':
|
258 |
+
out, m_E = self.fusion_out[fusion_index](out, f_E, d_s)
|
259 |
+
skip = self.fusion_skip[fusion_index](torch.cat([skip, f_E*m_E], dim=1))
|
260 |
+
m_Es += [m_E]
|
261 |
+
else:
|
262 |
+
out = self.fusion_out[fusion_index](torch.cat([out, f_E], dim=1))
|
263 |
+
skip = self.fusion_skip[fusion_index](torch.cat([skip, f_E], dim=1))
|
264 |
+
|
265 |
+
# remove the noise input
|
266 |
+
batch, _, height, width = out.shape
|
267 |
+
noise = x.new_empty(batch, 1, height * 2, width * 2).normal_().detach() * 0.0
|
268 |
+
|
269 |
+
out = conv1(out, adastyles[:, _index+6], noise=noise)
|
270 |
+
out = conv2(out, adastyles[:, _index+7], noise=noise)
|
271 |
+
skip = to_rgb(out, adastyles[:, _index+8], skip)
|
272 |
+
_index += 2
|
273 |
+
|
274 |
+
image = skip
|
275 |
+
if return_mask and self.backbone == 'dualstylegan':
|
276 |
+
return image, m_Es
|
277 |
+
return image
|
278 |
+
|
279 |
+
def stylegan(self):
|
280 |
+
if self.backbone == 'dualstylegan':
|
281 |
+
return self.generator.generator
|
282 |
+
else:
|
283 |
+
return self.generator
|
284 |
+
|
285 |
+
def zplus2wplus(self, zplus):
|
286 |
+
return self.stylegan().style(zplus.reshape(zplus.shape[0]*zplus.shape[1], zplus.shape[2])).reshape(zplus.shape)
|