Arnaudding001 commited on
Commit
cfd00dd
·
1 Parent(s): 5b1f1d2

Create encoder_psp.py

Browse files
Files changed (1) hide show
  1. encoder_psp.py +125 -0
encoder_psp.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This file defines the core research contribution
3
+ """
4
+ import matplotlib
5
+ matplotlib.use('Agg')
6
+ import math
7
+
8
+ import torch
9
+ from torch import nn
10
+ from model.encoder.encoders import psp_encoders
11
+ from model.stylegan.model import Generator
12
+
13
+ def get_keys(d, name):
14
+ if 'state_dict' in d:
15
+ d = d['state_dict']
16
+ d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name}
17
+ return d_filt
18
+
19
+
20
+ class pSp(nn.Module):
21
+
22
+ def __init__(self, opts):
23
+ super(pSp, self).__init__()
24
+ self.set_opts(opts)
25
+ # compute number of style inputs based on the output resolution
26
+ self.opts.n_styles = int(math.log(self.opts.output_size, 2)) * 2 - 2
27
+ # Define architecture
28
+ self.encoder = self.set_encoder()
29
+ self.decoder = Generator(self.opts.output_size, 512, 8)
30
+ self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256))
31
+ # Load weights if needed
32
+ self.load_weights()
33
+
34
+ def set_encoder(self):
35
+ if self.opts.encoder_type == 'GradualStyleEncoder':
36
+ encoder = psp_encoders.GradualStyleEncoder(50, 'ir_se', self.opts)
37
+ elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoW':
38
+ encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoW(50, 'ir_se', self.opts)
39
+ elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoWPlus':
40
+ encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoWPlus(50, 'ir_se', self.opts)
41
+ else:
42
+ raise Exception('{} is not a valid encoders'.format(self.opts.encoder_type))
43
+ return encoder
44
+
45
+ def load_weights(self):
46
+ if self.opts.checkpoint_path is not None:
47
+ print('Loading pSp from checkpoint: {}'.format(self.opts.checkpoint_path))
48
+ ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu')
49
+ self.encoder.load_state_dict(get_keys(ckpt, 'encoder'), strict=True)
50
+ self.decoder.load_state_dict(get_keys(ckpt, 'decoder'), strict=True)
51
+ self.__load_latent_avg(ckpt)
52
+ else:
53
+ pass
54
+ '''print('Loading encoders weights from irse50!')
55
+ encoder_ckpt = torch.load(model_paths['ir_se50'])
56
+ # if input to encoder is not an RGB image, do not load the input layer weights
57
+ if self.opts.label_nc != 0:
58
+ encoder_ckpt = {k: v for k, v in encoder_ckpt.items() if "input_layer" not in k}
59
+ self.encoder.load_state_dict(encoder_ckpt, strict=False)
60
+ print('Loading decoder weights from pretrained!')
61
+ ckpt = torch.load(self.opts.stylegan_weights)
62
+ self.decoder.load_state_dict(ckpt['g_ema'], strict=False)
63
+ if self.opts.learn_in_w:
64
+ self.__load_latent_avg(ckpt, repeat=1)
65
+ else:
66
+ self.__load_latent_avg(ckpt, repeat=self.opts.n_styles)
67
+ '''
68
+
69
+ def forward(self, x, resize=True, latent_mask=None, input_code=False, randomize_noise=True,
70
+ inject_latent=None, return_latents=False, alpha=None, z_plus_latent=False, return_z_plus_latent=True):
71
+ if input_code:
72
+ codes = x
73
+ else:
74
+ codes = self.encoder(x)
75
+ #print(codes.shape)
76
+ # normalize with respect to the center of an average face
77
+ if self.opts.start_from_latent_avg:
78
+ if self.opts.learn_in_w:
79
+ codes = codes + self.latent_avg.repeat(codes.shape[0], 1)
80
+ else:
81
+ codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1)
82
+
83
+
84
+ if latent_mask is not None:
85
+ for i in latent_mask:
86
+ if inject_latent is not None:
87
+ if alpha is not None:
88
+ codes[:, i] = alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i]
89
+ else:
90
+ codes[:, i] = inject_latent[:, i]
91
+ else:
92
+ codes[:, i] = 0
93
+
94
+ input_is_latent = not input_code
95
+ if z_plus_latent:
96
+ input_is_latent = False
97
+ images, result_latent = self.decoder([codes],
98
+ input_is_latent=input_is_latent,
99
+ randomize_noise=randomize_noise,
100
+ return_latents=return_latents,
101
+ z_plus_latent=z_plus_latent)
102
+
103
+ if resize:
104
+ images = self.face_pool(images)
105
+
106
+ if return_latents:
107
+ if z_plus_latent and return_z_plus_latent:
108
+ return images, codes
109
+ if z_plus_latent and not return_z_plus_latent:
110
+ return images, result_latent
111
+ else:
112
+ return images, result_latent
113
+ else:
114
+ return images
115
+
116
+ def set_opts(self, opts):
117
+ self.opts = opts
118
+
119
+ def __load_latent_avg(self, ckpt, repeat=None):
120
+ if 'latent_avg' in ckpt:
121
+ self.latent_avg = ckpt['latent_avg'].to(self.opts.device)
122
+ if repeat is not None:
123
+ self.latent_avg = self.latent_avg.repeat(repeat, 1)
124
+ else:
125
+ self.latent_avg = None