from fastapi import FastAPI, Request, HTTPException from pydantic import BaseModel from huggingface_hub import InferenceClient import json from typing import List, Dict, Tuple app = FastAPI() # Inisialisasi HuggingFace client client = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct") class ChatRequest(BaseModel): chat_history: List[Dict[str, str]] class ChatMemRequest(BaseModel): message: str chat_history: List[Tuple[str, str]] class ProcessJsonRequest(BaseModel): json_input: str def chat_llama(chat_history: List[Dict[str, str]]) -> List[Dict[str, str]]: chat_completion = client.chat_completion( messages=chat_history, max_tokens=500, ) chat_history.append({"role": "assistant", "content": chat_completion.choices[0].message.content}) return chat_history def chat_mem(message: str, chat_history: List[Tuple[str, str]]) -> Tuple[str, List[Tuple[str, str]]]: chat_history_role = [{"role": "system", "content": "You are a helpful assistant."}] for user_msg, assistant_msg in chat_history: chat_history_role.append({"role": "user", "content": user_msg}) chat_history_role.append({"role": "assistant", "content": assistant_msg}) chat_history_role.append({"role": "user", "content": message}) chat_completion = client.chat_completion( messages=chat_history_role, max_tokens=500, ) chat_history_role.append({"role": "assistant", "content": chat_completion.choices[0].message.content}) modified = map(lambda x: x["content"], chat_history_role) a = list(modified) chat_history = [(a[i*2+1], a[i*2+2]) for i in range(len(a)//2)] return "", chat_history def process_json(json_input: str) -> Tuple[str, str]: try: chat_history = json.loads(json_input) if not isinstance(chat_history, list): raise ValueError("Input should be a list of message dictionaries.") except (json.JSONDecodeError, ValueError) as e: return f"Error parsing JSON: {str(e)}", "" chat_history = chat_llama(chat_history) return json.dumps(chat_history, indent=2), "" @app.post("/chat_llama") async def chat_llama_endpoint(request: ChatRequest): chat_history = request.chat_history response = chat_llama(chat_history) return {"chat_history": response} @app.post("/chat_mem") async def chat_mem_endpoint(request: ChatMemRequest): message = request.message chat_history = request.chat_history response = chat_mem(message, chat_history) return {"message": response[0], "chat_history": response[1]} @app.post("/process_json") async def process_json_endpoint(request: ProcessJsonRequest): json_input = request.json_input response = process_json(json_input) return {"output_json": response[0], "error_message": response[1]} if __name__ == "__main__": import uvicorn uvicorn.run(app, host="0.0.0.0", port=7860)