Spaces:
Running
on
Zero
Running
on
Zero
primitive anti nsfw using wdtagger (#1)
Browse files- primitive anti nsfw using wdtagger (839c246614d296fb197ec94cbb08d99ed5c2b449)
Co-authored-by: yoinked <[email protected]>
app.py
CHANGED
@@ -2,6 +2,7 @@ import spaces
|
|
2 |
import os
|
3 |
import gc
|
4 |
import gradio as gr
|
|
|
5 |
import numpy as np
|
6 |
import torch
|
7 |
import json
|
@@ -12,7 +13,7 @@ from PIL import Image, PngImagePlugin
|
|
12 |
from datetime import datetime
|
13 |
from diffusers.models import AutoencoderKL
|
14 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
15 |
-
|
16 |
logging.basicConfig(level=logging.INFO)
|
17 |
logger = logging.getLogger(__name__)
|
18 |
|
@@ -33,7 +34,7 @@ MODEL = os.getenv(
|
|
33 |
"OnomaAIResearch/Illustrious-xl-early-release-v0",
|
34 |
)
|
35 |
|
36 |
-
torch.backends.cudnn.deterministic = True
|
37 |
torch.backends.cudnn.benchmark = False
|
38 |
|
39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
@@ -192,7 +193,19 @@ def generate(
|
|
192 |
pipe.scheduler = backup_scheduler
|
193 |
utils.free_memory()
|
194 |
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
if torch.cuda.is_available():
|
197 |
pipe = load_pipeline(MODEL)
|
198 |
logger.info("Loaded on Device!")
|
@@ -369,7 +382,7 @@ with gr.Blocks(css="style.css", theme="NoCrypt/[email protected]") as demo:
|
|
369 |
queue=False,
|
370 |
api_name=False,
|
371 |
).then(
|
372 |
-
fn=
|
373 |
inputs=[
|
374 |
prompt,
|
375 |
negative_prompt,
|
|
|
2 |
import os
|
3 |
import gc
|
4 |
import gradio as gr
|
5 |
+
import gradio_client as grcl
|
6 |
import numpy as np
|
7 |
import torch
|
8 |
import json
|
|
|
13 |
from datetime import datetime
|
14 |
from diffusers.models import AutoencoderKL
|
15 |
from diffusers import StableDiffusionXLPipeline, StableDiffusionXLImg2ImgPipeline
|
16 |
+
GRAD_CLIENT = grcl.Client("https://yoinked-da-nsfw-checker.hf.space/")
|
17 |
logging.basicConfig(level=logging.INFO)
|
18 |
logger = logging.getLogger(__name__)
|
19 |
|
|
|
34 |
"OnomaAIResearch/Illustrious-xl-early-release-v0",
|
35 |
)
|
36 |
|
37 |
+
torch.backends.cudnn.deterministic = True # maybe disable this? seems
|
38 |
torch.backends.cudnn.benchmark = False
|
39 |
|
40 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
193 |
pipe.scheduler = backup_scheduler
|
194 |
utils.free_memory()
|
195 |
|
196 |
+
def genwrap(*args, **kwargs):
|
197 |
+
ipth, mtd = generate(*args, **kwargs)
|
198 |
+
r = GRAD_CLIENT(image=grcl.file(ipth), "chen-evangelion", 0.4, False, False, api_name="/classify"))
|
199 |
+
ratings = val[0]
|
200 |
+
rating = rating['confidences']
|
201 |
+
highestval, classtype = -1, "aa"
|
202 |
+
for o in rating:
|
203 |
+
if o['confidence'] > highestval:
|
204 |
+
highestval = o['confidence']
|
205 |
+
classtype = o['label']
|
206 |
+
if classtype not in ["general", "sensitive"]: #add "questionable" and "explicit" to enable nsfw, or just delete this func
|
207 |
+
return "https://upload.wikimedia.org/wikipedia/commons/b/bf/Bucephala-albeola-010.jpg", mtd
|
208 |
+
return ipth, mtd
|
209 |
if torch.cuda.is_available():
|
210 |
pipe = load_pipeline(MODEL)
|
211 |
logger.info("Loaded on Device!")
|
|
|
382 |
queue=False,
|
383 |
api_name=False,
|
384 |
).then(
|
385 |
+
fn=genwrap,
|
386 |
inputs=[
|
387 |
prompt,
|
388 |
negative_prompt,
|