AngeT10 commited on
Commit
585f05a
·
verified ·
1 Parent(s): ad62cf5

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +91 -0
app.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import gradio as gr
3
+ from loguru import logger
4
+
5
+ # Funzione per scaricare i modelli
6
+ def download_models():
7
+ logger.info("Scaricamento dei modelli...")
8
+ os.system("apt update && apt install aria2 -y")
9
+
10
+ base_url = "https://huggingface.co/camenduru/HunyuanVideo"
11
+ models = {
12
+ "transformers/mp_rank_00_model_states.pt": "ckpts/hunyuan-video-t2v-720p/transformers",
13
+ "vae/config.json": "ckpts/hunyuan-video-t2v-720p/vae",
14
+ "vae/pytorch_model.pt": "ckpts/hunyuan-video-t2v-720p/vae",
15
+ "text_encoder/config.json": "ckpts/text_encoder",
16
+ "text_encoder/generation_config.json": "ckpts/text_encoder",
17
+ "text_encoder/model-00001-of-00004.safetensors": "ckpts/text_encoder",
18
+ "text_encoder/model-00002-of-00004.safetensors": "ckpts/text_encoder",
19
+ "text_encoder/model-00003-of-00004.safetensors": "ckpts/text_encoder",
20
+ "text_encoder/model-00004-of-00004.safetensors": "ckpts/text_encoder",
21
+ "text_encoder/model.safetensors.index.json": "ckpts/text_encoder",
22
+ "text_encoder/special_tokens_map.json": "ckpts/text_encoder",
23
+ "text_encoder/tokenizer.json": "ckpts/text_encoder",
24
+ "text_encoder/tokenizer_config.json": "ckpts/text_encoder",
25
+ }
26
+
27
+ for file_path, folder in models.items():
28
+ os.makedirs(folder, exist_ok=True)
29
+ command = (
30
+ f"aria2c --console-log-level=error -c -x 16 -s 16 -k 1M "
31
+ f"{base_url}/resolve/main/{file_path} -d {folder} -o {os.path.basename(file_path)}"
32
+ )
33
+ logger.info(f"Scaricando: {file_path}")
34
+ os.system(command)
35
+
36
+ logger.info("Download completato.")
37
+
38
+ # Funzione per generare il video
39
+ def generate_video(prompt, video_size, video_length, infer_steps, seed):
40
+ download_models()
41
+ logger.info("Clonazione del repository...")
42
+ os.system("git clone https://github.com/Tencent/HunyuanVideo /content/HunyuanVideo")
43
+ os.chdir("/content/HunyuanVideo")
44
+
45
+ save_path = "./results/generated_video.mp4"
46
+ command = (
47
+ f"python sample_video.py "
48
+ f"--video-size {video_size[0]} {video_size[1]} "
49
+ f"--video-length {video_length} "
50
+ f"--infer-steps {infer_steps} "
51
+ f"--prompt '{prompt}' "
52
+ f"--flow-reverse "
53
+ f"--seed {seed} "
54
+ f"--use-cpu-offload "
55
+ f"--save-path {save_path}"
56
+ )
57
+ logger.info("Esecuzione del modello...")
58
+ os.system(command)
59
+
60
+ if os.path.exists(save_path):
61
+ return save_path
62
+ else:
63
+ logger.error("Video non generato correttamente.")
64
+ return None
65
+
66
+ # Interfaccia Gradio
67
+ def infer(prompt, width, height, video_length, infer_steps, seed):
68
+ video_size = (width, height)
69
+ video_path = generate_video(prompt, video_size, video_length, infer_steps, seed)
70
+ if video_path:
71
+ return video_path
72
+ return "Errore nella generazione del video."
73
+
74
+ with gr.Blocks() as demo:
75
+ gr.Markdown("# HunyuanVideo - Generazione di video basati su testo")
76
+
77
+ with gr.Row():
78
+ with gr.Column():
79
+ prompt = gr.Textbox(label="Prompt", placeholder="Descrivi il tuo video (es. a cat is running, realistic.)")
80
+ width = gr.Slider(label="Larghezza Video", minimum=360, maximum=1920, step=1, value=720)
81
+ height = gr.Slider(label="Altezza Video", minimum=360, maximum=1080, step=1, value=1280)
82
+ video_length = gr.Slider(label="Durata Video (frames)", minimum=10, maximum=300, step=1, value=129)
83
+ infer_steps = gr.Slider(label="Passi di Inferenza", minimum=10, maximum=100, step=1, value=50)
84
+ seed = gr.Slider(label="Seed", minimum=0, maximum=1000, step=1, value=0)
85
+ submit_btn = gr.Button("Genera Video")
86
+ with gr.Column():
87
+ output = gr.Video(label="Video Generato")
88
+
89
+ submit_btn.click(infer, inputs=[prompt, width, height, video_length, infer_steps, seed], outputs=output)
90
+
91
+ demo.launch()