Anandbheesetti
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import pipeline,Conversation
|
2 |
+
import gradio as gr
|
3 |
+
|
4 |
+
pipe = pipeline(
|
5 |
+
"automatic-speech-recognition",
|
6 |
+
model="openai/whisper-base",
|
7 |
+
)
|
8 |
+
|
9 |
+
model= pipeline("conversational", model="facebook/blenderbot-400M-distill")
|
10 |
+
|
11 |
+
|
12 |
+
|
13 |
+
# Get a response
|
14 |
+
|
15 |
+
# Initialize the conversational model
|
16 |
+
# conversational_model = pipeline("conversational", model="microsoft/DialoGPT-medium")
|
17 |
+
|
18 |
+
# Mock implementation of transcribe_speech for demonstration
|
19 |
+
def transcribe_speech(filepath):
|
20 |
+
output = pipe(
|
21 |
+
filepath,
|
22 |
+
max_new_tokens=256,
|
23 |
+
generate_kwargs={
|
24 |
+
"task": "transcribe",
|
25 |
+
"language": "english",
|
26 |
+
}, # update with the language you've fine-tuned on
|
27 |
+
chunk_length_s=30,
|
28 |
+
batch_size=8,
|
29 |
+
)
|
30 |
+
return output["text"]
|
31 |
+
|
32 |
+
def handle_audio_input(audio_file):
|
33 |
+
try:
|
34 |
+
# Step 1: Transcribe the audio
|
35 |
+
transcribed_text = transcribe_speech(audio_file)
|
36 |
+
print(f"Transcribed text: {transcribed_text}")
|
37 |
+
|
38 |
+
# Step 2: Create a conversation and generate a response from transcribed text
|
39 |
+
conversation = Conversation(transcribed_text)
|
40 |
+
response = model(conversation)
|
41 |
+
chatbot_response = response.generated_responses[-1]
|
42 |
+
print(f"Chatbot response: {chatbot_response}")
|
43 |
+
|
44 |
+
return transcribed_text, chatbot_response
|
45 |
+
except Exception as e:
|
46 |
+
print(f"Error: {e}")
|
47 |
+
return "Error in processing audio", str(e)
|
48 |
+
|
49 |
+
# Create the Gradio Blocks container
|
50 |
+
with gr.Blocks() as demo:
|
51 |
+
gr.Markdown("## Customer query audio to text chatbot")
|
52 |
+
|
53 |
+
with gr.Tab("Microphone"):
|
54 |
+
mic_transcribe = gr.Interface(
|
55 |
+
fn=handle_audio_input,
|
56 |
+
inputs=gr.Audio(sources="microphone", type="filepath"),
|
57 |
+
outputs=[gr.Textbox(label="Transcription"), gr.Textbox(label="Chatbot Response")],
|
58 |
+
)
|
59 |
+
mic_transcribe.render()
|
60 |
+
|
61 |
+
with gr.Tab("File Upload"):
|
62 |
+
file_transcribe = gr.Interface(
|
63 |
+
fn=handle_audio_input,
|
64 |
+
inputs=gr.Audio(sources="upload", type="filepath"),
|
65 |
+
outputs=[gr.Textbox(label="Transcription"), gr.Textbox(label="Chatbot Response")],
|
66 |
+
)
|
67 |
+
file_transcribe.render()
|
68 |
+
|
69 |
+
# Launch the Gradio app
|
70 |
+
demo.launch(share=True)
|