Face_Over / help_function.py
AmitIsraeli's picture
Add application file
2cb6621
import torch
import open_clip
from torchvision import transforms
from torchvision.transforms import ToPILImage
class help_function:
def __init__(self):
self.clip_text_model = torch.jit.load('jit_models/clip_text_jit.pt', map_location=torch.device('cpu'))
self.decoder = torch.jit.load('jit_models/decoder_16w.pt', map_location=torch.device('cpu'))
self.mapper_clip = torch.jit.load('jit_models/mapper_clip_jit.pt', map_location=torch.device('cpu'))
self.mean_clip = torch.load('jit_models/mean_clip.pt')
self.mean_person = torch.load('jit_models/mean_person.pt')
self.encoder = torch.jit.load('jit_models/combined_encoder.pt', map_location=torch.device('cpu'))
self.tokenizer = open_clip.get_tokenizer('ViT-B-32')
self.transform = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
def get_text_embedding(self, text):
text = self.clip_text_model(self.tokenizer(text))
return text
def get_image_inversion(self, image):
image = self.transform(image)
w_inversion = self.encoder(image.reshape(1,3,224,224)).reshape(1,16,512)
return w_inversion + self.mean_person
def get_text_delta(self,text_feachers):
w_delta = self.mapper_clip(text_feachers - self.mean_clip)
return w_delta
def image_from_text(self,text,image,power = 1.0):
w_inversion = self.get_image_inversion(image)
text_embedding = self.get_text_embedding(text)
w_delta = self.get_text_delta(text_embedding)
w_edit = w_inversion + w_delta * power
image_edit = self.decoder(w_edit)
return ToPILImage()((image_edit[0]+0.5)*0.5)