import gradio as gr import spaces import torch import os import subprocess os.system("pip install git+https://github.com/huggingface/transformers") from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor from qwen_vl_utils import process_vision_info model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-7B-Instruct").cuda() processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") @spaces.GPU def infer(n): if len(n) < 1: n = "请将图里文字转成markdown" messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://lf3-static.bytednsdoc.com/obj/eden-cn/pbovhozuha/screenshot-20240923-164458.png", }, {"type": "text", "text": n}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=[text], images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) inputs = inputs.to(model.device) generated_ids = model.generate(**inputs, max_new_tokens=512) generated_ids_trimmed = [ out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) ] output_text = processor.batch_decode( generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False ) return output_text demo = gr.Interface(fn=infer, inputs=gr.Text(), outputs=gr.Text()) demo.launch()