File size: 2,618 Bytes
ae3ff72 c6682ca ae3ff72 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 |
import torch
import streamlit as st
from transformers import RobertaTokenizer, RobertaForSequenceClassification
import re
import string
def tokenize_sentences(sentence):
encoded_dict = tokenizer.encode_plus(
sentence,
add_special_tokens=True,
max_length=128,
padding='max_length',
truncation=True,
return_attention_mask=True,
return_tensors='pt'
)
return torch.cat([encoded_dict['input_ids']], dim=0), torch.cat([encoded_dict['attention_mask']], dim=0)
def preprocess_query(query):
query = str(query).lower()
query = query.strip()
query=query.translate(str.maketrans("", "", string.punctuation))
return query
def predict_category(sentence, threshold):
input_ids, attention_mask = tokenize_sentences(sentence)
with torch.no_grad():
outputs = categories_model(input_ids, attention_mask=attention_mask)
logits = outputs.logits
predicted_categories = torch.sigmoid(logits).squeeze().tolist()
results = dict()
for label, prediction in zip(LABEL_COLUMNS_CATEGORIES, predicted_categories):
if prediction < threshold:
continue
precentage = round(float(prediction) * 100, 2)
results[label] = precentage
return results
# Load tokenizer and model
BERT_MODEL_NAME_FOR_CATEGORIES_CLASSIFICATION = 'roberta-large'
tokenizer = RobertaTokenizer.from_pretrained(BERT_MODEL_NAME_FOR_CATEGORIES_CLASSIFICATION, do_lower_case=True)
LABEL_COLUMNS_CATEGORIES = ['AMBIENCE', 'DRINK', 'FOOD', 'GENERAL', 'RESTAURANT', 'SERVICE', 'STAFF']
categories_model = RobertaForSequenceClassification.from_pretrained(BERT_MODEL_NAME_FOR_CATEGORIES_CLASSIFICATION, num_labels=len(LABEL_COLUMNS_CATEGORIES))
categories_model.load_state_dict(torch.load('./Categories_Classification_Model_updated.pth',map_location=torch.device('cpu') ))
categories_model.eval()
# Streamlit App
st.title("Review/Sentence Classification")
st.write("Multilable/Multiclass Sentence classification under 7 Defined Categories. ")
sentence = st.text_input("Enter a sentence:")
threshold = st.slider("Threshold", min_value=0.0, max_value=1.0, step=0.01, value=0.5)
if sentence:
processed_sentence = preprocess_query(sentence)
results = predict_category(processed_sentence, threshold)
if len(results) > 0:
st.write("Predicted Aspects:")
table_data = [["Category", "Probability"]]
for category, percentage in results.items():
table_data.append([category, f"{percentage}%"])
st.table(table_data)
else:
st.write("No Categories above the threshold.") |