import requests import torch from transformers import XLNetTokenizer, XLNetForSequenceClassification import gradio as gr # URL of the saved model on GitHub model_url = 'https://github.com/AliArshadswl/severity_prediction/raw/main/XLNet_model_project_Core.pt' # Function to download the model from URL and load it def download_model(url): response = requests.get(url) with open('XLNet_model_project_Core.pt', 'wb') as f: f.write(response.content) # Download the model download_model(model_url) # Load the saved model tokenizer = XLNetTokenizer.from_pretrained('xlnet-base-cased') model = XLNetForSequenceClassification.from_pretrained('xlnet-base-cased', num_labels=2) model.load_state_dict(torch.load('XLNet_model_project_Core.pt', map_location=torch.device('cpu'))) model.eval() # Function for prediction def xl_net_predict(text): inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True, max_length=100) with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits probabilities = torch.softmax(logits, dim=1) predicted_class = torch.argmax(probabilities).item() return "Severe" if predicted_class == 1 else "Non-severe" # Customizing the interface iface = gr.Interface( fn=xl_net_predict, inputs=gr.Textbox(lines=2, label="Summary", placeholder="Enter text here..."), outputs=gr.Textbox(label="Predicted Severity"), title="SevPrecit - A GPT-2 Based Bug Report Severity Prediction", description="Enter text and predict its severity (Severe or Non-severe).", theme="huggingface", examples=[ ["Can't open multiple bookmarks at once from the bookmarks sidebar using the context menu"], ["Minor enhancements to make-source-package.sh"] ], allow_flagging=False ) iface.launch()