File size: 1,479 Bytes
2788d6a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a82a15f
2788d6a
a9da16d
2788d6a
 
22a7410
49d24e2
3b81d8c
 
 
 
2788d6a
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
from transformers import pipeline
import gradio as gr

# Load the model using the pipeline
pipe = pipeline("text-classification", model="AliArshad/Severity_Predictor")
from transformers import pipeline
import gradio as gr

# Load the model using the pipeline
pipe = pipeline("text-classification", model="AliArshad/Severity_Predictor")

# Function to predict severity and return confidence score
def predict_severity(text):
    # Get prediction from the pipeline
    prediction = pipe(text)

    # Interpret the label and get the confidence score
    label = prediction[0]['label']
    confidence = prediction[0]['score']
    severity = "Severe" if label == "LABEL_1" else "Non-Severe"

    # Return severity and confidence as separate outputs
    return severity, confidence

# Define the Gradio interface with a title, specific placeholder message, and a progress bar for confidence
iface = gr.Interface(
    fn=predict_severity,
    inputs=gr.Textbox(lines=2, placeholder="Please Enter Bug Report Summary"),
    outputs=[
        gr.Textbox(label="Prediction"),
        gr.Number(label="Confidence", precision=2)
    ],
    title="SevPredict: GPT-2 Based Severity Prediction",
    description="Enter text and predict its severity (Severe or Non-severe).",
    examples=[
        ["Can't open multiple bookmarks at once from the bookmarks sidebar using the context menu"],
        ["Minor enhancements to make-source-package.sh"]
    ]
)

# Launch the interface
iface.launch()