|
import numpy as np |
|
import gradio as gr |
|
import requests |
|
import json |
|
|
|
def list_to_dict(data): |
|
results = {} |
|
|
|
for i in range(len(data)): |
|
|
|
d = data[i] |
|
|
|
results[d['label']] = d['score'] |
|
|
|
|
|
return results |
|
|
|
API_URL = "https://api-inference.huggingface.co/models/nateraw/food" |
|
headers = {"Authorization": "Bearer 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"} |
|
|
|
def query(filename): |
|
with open(filename, "rb") as f: |
|
data = f.read() |
|
response = requests.request("POST", API_URL, headers=headers, data=data) |
|
output = json.loads(response.content.decode("utf-8")) |
|
return list_to_dict(output),json.dumps(output, indent=2, sort_keys=True) |
|
|
|
def get_nutrition_info(food_name): |
|
|
|
response = requests.get( |
|
"https://trackapi.nutritionix.com/v2/search/instant", |
|
params={"query": food_name}, |
|
headers={ |
|
"x-app-id": "63a710ef", |
|
"x-app-key": "3ddc7e3feda88e1cf6dd355fb26cb261" |
|
} |
|
) |
|
|
|
data = response.json() |
|
response = data["branded"][0]["photo"]["thumb"] |
|
|
|
|
|
|
|
return { |
|
"food_name": data["branded"][0]["food_name"], |
|
"calories": data["branded"][0]["nf_calories"], |
|
"serving_size": data["branded"][0]["serving_qty"], |
|
"serving_unit": data["branded"][0]["serving_unit"], |
|
|
|
},response |
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("Food-Classification-Calorie-Estimation and Volume-Estimation") |
|
with gr.Tab("Food Classification"): |
|
text_input = gr.Image(type="filepath") |
|
text_output = [gr.Label(num_top_classes=6), |
|
gr.Textbox() |
|
] |
|
text_button = gr.Button("Food Classification") |
|
with gr.Tab("Food Calorie Estimation"): |
|
image_input = gr.Textbox(label="Please enter the name of the Food you want to get calorie") |
|
image_output = [gr.Textbox(), |
|
gr.Image(type="filepath") |
|
] |
|
image_button = gr.Button("Estimate Calories!") |
|
with gr.Tab("Volume Estimation"): |
|
_image_input = gr.Textbox(label="Please enter the name of the Food you want to get calorie") |
|
_image_output = [gr.Textbox(), |
|
gr.Image() |
|
] |
|
_image_button = gr.Button("Volume Calculation") |
|
with gr.Tab("Future Works"): |
|
gr.Markdown("Future work on Food Classification") |
|
gr.Markdown( |
|
"Currently the Model is trained on food-101 Dataset, which has 100 classes, In the future iteration of the project we would like to train the model on UNIMIB Dataset with 256 Food Classes") |
|
gr.Markdown("Future work on Volume Estimation") |
|
gr.Markdown( |
|
"The volume model has been trained on Apple AR Toolkit and thus can be executred only on Apple devices ie a iOS platform, In futur we would like to train the volume model such that it is Platform independent") |
|
gr.Markdown("Future work on Calorie Estimation") |
|
gr.Markdown( |
|
"The Calorie Estimation currently relies on Nutritionix API , In Future Iteration we would like to build our own Custom Database of Major Food Product across New York Restaurent") |
|
gr.Markdown("https://github.com/Ali-Maq/Food-Classification-Volume-Estimation-and-Calorie-Estimation/blob/main/README.md") |
|
|
|
text_button.click(query, inputs=text_input, outputs=text_output) |
|
image_button.click(get_nutrition_info, inputs=image_input, outputs=image_output) |
|
_image_button.click(get_nutrition_info, inputs=_image_input, outputs=_image_output) |
|
with gr.Accordion("Open for More!"): |
|
gr.Markdown("π Designed and built by Ali Under the Guidance of Professor Dennis Shasha") |
|
gr.Markdown("Contact me at [email protected] π") |
|
|
|
demo.launch(share=True, debug=True) |
|
|