# -*- coding: utf-8 -*- """HW3_ml.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1z4ht7K9pttbgWmDDnrQhqoZ6SYAiaeUe """ # !pip -q uninstall gradio -y # !pip -q install gradio==3.50.2 # !pip -q install datasets import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="voidful/wav2vec2-xlsr-multilingual-56", device=device) # !pip -q install sentencepiece # load text-to-speech checkpoint and speaker embeddings # processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") processor = WhisperProcessor.from_pretrained( "openai/whisper-small") translator1 = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en") translator2 = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru") from transformers import VitsModel, VitsTokenizer # model = pipeline("text-to-speech", model="suno/bark-small") model = VitsModel.from_pretrained("facebook/mms-tts-rus") tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus") def translator_mul_ru(text): translation = translator2(translator1(text)[0]['translation_text']) return translation[0]['translation_text'] def translate(audio): outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"}) return outputs["text"] def synthesise(text): translated_text = translator_mul_ru(text) inputs = tokenizer(translated_text, return_tensors="pt") input_ids = inputs["input_ids"] with torch.no_grad(): outputs = model(input_ids) speech = outputs["waveform"] return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) print(translated_text) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech[0] title = "Cascaded STST" description = """ * Данная модель распознает текст на 56 языках Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian. Demo uses facebook/mms-tts-rus model for text-to-speech: ![Cascaded STST](https://huggingface.co./datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation") """ demo = gr.Blocks() mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="microphone", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(source="upload", type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), title=title, description=description, ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "File"]) demo.launch()