Spaces:
Runtime error
Runtime error
File size: 3,263 Bytes
fa5b21a d347764 fa5b21a d347764 fa5b21a d347764 fa5b21a d347764 fa5b21a d347764 fa5b21a d347764 fa5b21a d347764 fa5b21a d347764 fa5b21a d347764 fa5b21a d347764 fa5b21a d347764 f805e49 1ad28de fa5b21a f805e49 fa5b21a f805e49 c737803 d347764 226ec3a d347764 f805e49 d347764 c737803 fa5b21a c737803 d347764 fa5b21a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 |
# -*- coding: utf-8 -*-
"""HW3_ml.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1z4ht7K9pttbgWmDDnrQhqoZ6SYAiaeUe
"""
# !pip -q uninstall gradio -y
# !pip -q install gradio==3.50.2
# !pip -q install datasets
import gradio as gr
import numpy as np
import torch
from datasets import load_dataset
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load speech translation checkpoint
asr_pipe = pipeline("automatic-speech-recognition", model="voidful/wav2vec2-xlsr-multilingual-56", device=device)
# !pip -q install sentencepiece
# load text-to-speech checkpoint and speaker embeddings
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
processor = WhisperProcessor.from_pretrained(
"openai/whisper-small")
translator1 = pipeline("translation", model="Helsinki-NLP/opus-mt-mul-en")
translator2 = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ru")
from transformers import VitsModel, VitsTokenizer
# model = pipeline("text-to-speech", model="suno/bark-small")
model = VitsModel.from_pretrained("facebook/mms-tts-rus")
tokenizer = VitsTokenizer.from_pretrained("facebook/mms-tts-rus")
def translator_mul_ru(text):
translation = translator2(translator1(text)[0]['translation_text'])
return translation[0]['translation_text']
def translate(audio):
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
return outputs["text"]
def synthesise(text):
translated_text = translator_mul_ru(text)
inputs = tokenizer(translated_text, return_tensors="pt")
input_ids = inputs["input_ids"]
with torch.no_grad():
outputs = model(input_ids)
speech = outputs["waveform"]
return speech.cpu()
def speech_to_speech_translation(audio):
translated_text = translate(audio)
print(translated_text)
synthesised_speech = synthesise(translated_text)
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
return 16000, synthesised_speech[0]
title = "Cascaded STST"
description = """
* Данная модель распознает текст на 56 языках
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Russian. Demo uses facebook/mms-tts-rus model for text-to-speech:
![Cascaded STST](https://huggingface.co./datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
"""
demo = gr.Blocks()
mic_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="microphone", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
file_translate = gr.Interface(
fn=speech_to_speech_translation,
inputs=gr.Audio(source="upload", type="filepath"),
outputs=gr.Audio(label="Generated Speech", type="numpy"),
title=title,
description=description,
)
with demo:
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "File"])
demo.launch()
|