import gradio as gr from optimum.intel.openvino import OVStableDiffusionPipeline from diffusers.training_utils import set_seed from diffusers import DDPMScheduler, StableDiffusionPipeline import gc import subprocess import time def create_pipeline(name): if name == "valhalla/sd-pokemon-model": scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) pipe = StableDiffusionPipeline.from_pretrained(name, scheduler=scheduler) pipe.safety_checker = lambda images, clip_input: (images, False) elif name == "stable-diffusion-pokemons-valhalla-fp32": scheduler = DDPMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000) pipe = OVStableDiffusionPipeline.from_pretrained(name, compile=False, scheduler=scheduler) pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1) pipe.compile() else: pipe = OVStableDiffusionPipeline.from_pretrained(name, compile=False) pipe.reshape(batch_size=1, height=512, width=512, num_images_per_prompt=1) pipe.compile() return pipe pipes = { "Torch fp32": "valhalla/sd-pokemon-model", #"svjack/Stable-Diffusion-Pokemon-en", "OpenVINO fp32": "OpenVINO/stable-diffusion-pokemons-valhalla-fp32", #"OpenVINO/stable-diffusion-pokemons-fp32", "OpenVINO 8-bit quantized": "OpenVINO/stable-diffusion-pokemons-valhalla-quantized-agressive", #"OpenVINO/stable-diffusion-pokemons-quantized-aggressive", "OpenVINO merged and quantized": "OpenVINO/stable-diffusion-pokemons-valhalla-tome-quantized-agressive", #"OpenVINO/stable-diffusion-pokemons-tome-quantized-aggressive" } # prefetch pipelines on start for v in pipes.values(): pipe = create_pipeline(v) del pipe gc.collect() print((subprocess.check_output("lscpu", shell=True).strip()).decode()) def generate(prompt, option, seed): pipe = create_pipeline(pipes[option]) set_seed(int(seed)) start_time = time.time() if "Torch" in option: output = pipe(prompt, num_inference_steps=50, output_type="pil", height=512, width=512) else: output = pipe(prompt, num_inference_steps=50, output_type="pil") elapsed_time = time.time() - start_time return (output.images[0], "{:10.4f}".format(elapsed_time)) examples = ["cartoon bird", "a drawing of a green pokemon with red eyes", "plant pokemon in jungle"] model_options = [option for option in pipes.keys()] gr.Interface( fn=generate, inputs=[gr.inputs.Textbox(default="cartoon bird", label="Prompt", lines=1), gr.inputs.Dropdown(choices=model_options, default=model_options[-1], label="Model version"), gr.inputs.Textbox(default="42", label="Seed", lines=1) ], outputs=[gr.outputs.Image(type="pil", label="Generated Image"), gr.outputs.Textbox(label="Inference time")], title="OpenVINO-optimized Stable Diffusion", description="This is the Optimum-based demo for NNCF-optimized Stable Diffusion pipeline trained on 'lambdalabs/pokemon-blip-captions' dataset and running with OpenVINO.\n" "The pipeline is run using 8 vCPUs (4 cores) only.", theme="huggingface", ).launch()