# Copyright (c) 2022 NVIDIA CORPORATION. # Licensed under the MIT license. import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from util import weight_scaling_init torch.manual_seed(0) np.random.seed(0) # Transformer (encoder) https://github.com/jadore801120/attention-is-all-you-need-pytorch # Original Copyright 2017 Victor Huang # MIT License (https://opensource.org/licenses/MIT) class ScaledDotProductAttention(nn.Module): ''' Scaled Dot-Product Attention ''' def __init__(self, temperature, attn_dropout=0.1): super().__init__() self.temperature = temperature self.dropout = nn.Dropout(attn_dropout) def forward(self, q, k, v, mask=None): attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) if mask is not None: _MASKING_VALUE = -1e9 if attn.dtype == torch.float32 else -1e4 attn = attn.masked_fill(mask == 0, _MASKING_VALUE) attn = self.dropout(F.softmax(attn, dim=-1)) output = torch.matmul(attn, v) return output, attn class MultiHeadAttention(nn.Module): ''' Multi-Head Attention module ''' def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): super().__init__() self.n_head = n_head self.d_k = d_k self.d_v = d_v self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) self.fc = nn.Linear(n_head * d_v, d_model, bias=False) self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) self.dropout = nn.Dropout(dropout) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) def forward(self, q, k, v, mask=None): d_k, d_v, n_head = self.d_k, self.d_v, self.n_head sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) residual = q # Pass through the pre-attention projection: b x lq x (n*dv) # Separate different heads: b x lq x n x dv q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) # Transpose for attention dot product: b x n x lq x dv q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) if mask is not None: mask = mask.unsqueeze(1) # For head axis broadcasting. q, attn = self.attention(q, k, v, mask=mask) # Transpose to move the head dimension back: b x lq x n x dv # Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv) q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) q = self.dropout(self.fc(q)) q += residual q = self.layer_norm(q) return q, attn class PositionwiseFeedForward(nn.Module): ''' A two-feed-forward-layer module ''' def __init__(self, d_in, d_hid, dropout=0.1): super().__init__() self.w_1 = nn.Linear(d_in, d_hid) # position-wise self.w_2 = nn.Linear(d_hid, d_in) # position-wise self.layer_norm = nn.LayerNorm(d_in, eps=1e-6) self.dropout = nn.Dropout(dropout) def forward(self, x): residual = x x = self.w_2(F.relu(self.w_1(x))) x = self.dropout(x) x += residual x = self.layer_norm(x) return x def get_subsequent_mask(seq): ''' For masking out the subsequent info. ''' sz_b, len_s = seq.size() subsequent_mask = (1 - torch.triu( torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool() return subsequent_mask class PositionalEncoding(nn.Module): def __init__(self, d_hid, n_position=200): super(PositionalEncoding, self).__init__() # Not a parameter self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid)) def _get_sinusoid_encoding_table(self, n_position, d_hid): ''' Sinusoid position encoding table ''' # TODO: make it with torch instead of numpy def get_position_angle_vec(position): return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 return torch.FloatTensor(sinusoid_table).unsqueeze(0) def forward(self, x): return x + self.pos_table[:, :x.size(1)].clone().detach() class EncoderLayer(nn.Module): ''' Compose with two layers ''' def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.0): super(EncoderLayer, self).__init__() self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout) def forward(self, enc_input, slf_attn_mask=None): enc_output, enc_slf_attn = self.slf_attn( enc_input, enc_input, enc_input, mask=slf_attn_mask) enc_output = self.pos_ffn(enc_output) return enc_output, enc_slf_attn class TransformerEncoder(nn.Module): ''' A encoder model with self attention mechanism. ''' def __init__( self, d_word_vec=512, n_layers=2, n_head=8, d_k=64, d_v=64, d_model=512, d_inner=2048, dropout=0.1, n_position=624, scale_emb=False): super().__init__() # self.src_word_emb = nn.Embedding(n_src_vocab, d_word_vec, padding_idx=pad_idx) if n_position > 0: self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position) else: self.position_enc = lambda x: x self.dropout = nn.Dropout(p=dropout) self.layer_stack = nn.ModuleList([ EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout) for _ in range(n_layers)]) self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) self.scale_emb = scale_emb self.d_model = d_model def forward(self, src_seq, src_mask, return_attns=False): enc_slf_attn_list = [] # -- Forward # enc_output = self.src_word_emb(src_seq) enc_output = src_seq if self.scale_emb: enc_output *= self.d_model ** 0.5 enc_output = self.dropout(self.position_enc(enc_output)) enc_output = self.layer_norm(enc_output) for enc_layer in self.layer_stack: enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask) enc_slf_attn_list += [enc_slf_attn] if return_attns else [] if return_attns: return enc_output, enc_slf_attn_list return enc_output # CleanUNet architecture def padding(x, D, K, S): """padding zeroes to x so that denoised audio has the same length""" L = x.shape[-1] for _ in range(D): if L < K: L = 1 else: L = 1 + np.ceil((L - K) / S) for _ in range(D): L = (L - 1) * S + K L = int(L) x = F.pad(x, (0, L - x.shape[-1])) return x class CleanUNet(nn.Module): """ CleanUNet architecture. """ def __init__(self, channels_input=1, channels_output=1, channels_H=64, max_H=768, encoder_n_layers=8, kernel_size=4, stride=2, tsfm_n_layers=3, tsfm_n_head=8, tsfm_d_model=512, tsfm_d_inner=2048): """ Parameters: channels_input (int): input channels channels_output (int): output channels channels_H (int): middle channels H that controls capacity max_H (int): maximum H encoder_n_layers (int): number of encoder/decoder layers D kernel_size (int): kernel size K stride (int): stride S tsfm_n_layers (int): number of self attention blocks N tsfm_n_head (int): number of heads in each self attention block tsfm_d_model (int): d_model of self attention tsfm_d_inner (int): d_inner of self attention """ super(CleanUNet, self).__init__() self.channels_input = channels_input self.channels_output = channels_output self.channels_H = channels_H self.max_H = max_H self.encoder_n_layers = encoder_n_layers self.kernel_size = kernel_size self.stride = stride self.tsfm_n_layers = tsfm_n_layers self.tsfm_n_head = tsfm_n_head self.tsfm_d_model = tsfm_d_model self.tsfm_d_inner = tsfm_d_inner # encoder and decoder self.encoder = nn.ModuleList() self.decoder = nn.ModuleList() for i in range(encoder_n_layers): self.encoder.append(nn.Sequential( nn.Conv1d(channels_input, channels_H, kernel_size, stride), nn.ReLU(), nn.Conv1d(channels_H, channels_H * 2, 1), nn.GLU(dim=1) )) channels_input = channels_H if i == 0: # no relu at end self.decoder.append(nn.Sequential( nn.Conv1d(channels_H, channels_H * 2, 1), nn.GLU(dim=1), nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride) )) else: self.decoder.insert(0, nn.Sequential( nn.Conv1d(channels_H, channels_H * 2, 1), nn.GLU(dim=1), nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride), nn.ReLU() )) channels_output = channels_H # double H but keep below max_H channels_H *= 2 channels_H = min(channels_H, max_H) # self attention block self.tsfm_conv1 = nn.Conv1d(channels_output, tsfm_d_model, kernel_size=1) self.tsfm_encoder = TransformerEncoder(d_word_vec=tsfm_d_model, n_layers=tsfm_n_layers, n_head=tsfm_n_head, d_k=tsfm_d_model // tsfm_n_head, d_v=tsfm_d_model // tsfm_n_head, d_model=tsfm_d_model, d_inner=tsfm_d_inner, dropout=0.0, n_position=0, scale_emb=False) self.tsfm_conv2 = nn.Conv1d(tsfm_d_model, channels_output, kernel_size=1) # weight scaling initialization for layer in self.modules(): if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)): weight_scaling_init(layer) def forward(self, noisy_audio): # (B, L) -> (B, C, L) if len(noisy_audio.shape) == 2: noisy_audio = noisy_audio.unsqueeze(1) B, C, L = noisy_audio.shape assert C == 1 # normalization and padding std = noisy_audio.std(dim=2, keepdim=True) + 1e-3 noisy_audio /= std x = padding(noisy_audio, self.encoder_n_layers, self.kernel_size, self.stride) # encoder skip_connections = [] for downsampling_block in self.encoder: x = downsampling_block(x) skip_connections.append(x) skip_connections = skip_connections[::-1] # attention mask for causal inference; for non-causal, set attn_mask to None len_s = x.shape[-1] # length at bottleneck attn_mask = (1 - torch.triu(torch.ones((1, len_s, len_s), device=x.device), diagonal=1)).bool() x = self.tsfm_conv1(x) # C 1024 -> 512 x = x.permute(0, 2, 1) x = self.tsfm_encoder(x, src_mask=attn_mask) x = x.permute(0, 2, 1) x = self.tsfm_conv2(x) # C 512 -> 1024 # decoder for i, upsampling_block in enumerate(self.decoder): skip_i = skip_connections[i] x += skip_i[:, :, :x.shape[-1]] x = upsampling_block(x) x = x[:, :, :L] * std return x if __name__ == '__main__': import json import argparse import os parser = argparse.ArgumentParser() parser.add_argument('-c', '--config', type=str, default='configs/DNS-large-full.json', help='JSON file for configuration') args = parser.parse_args() with open(args.config) as f: data = f.read() config = json.loads(data) network_config = config["network_config"] model = CleanUNet(**network_config).cuda() from util import print_size print_size(model, keyword="tsfm") input_data = torch.ones([4,1,int(4.5*16000)]).cuda() output = model(input_data) print(output.shape) y = torch.rand([4,1,int(4.5*16000)]).cuda() loss = torch.nn.MSELoss()(y, output) loss.backward() print(loss.item())