AlexK-PL commited on
Commit
d188a55
1 Parent(s): f16a53c

Create stft_loss.py

Browse files
Files changed (1) hide show
  1. stft_loss.py +174 -0
stft_loss.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/kan-bayashi/ParallelWaveGAN
2
+
3
+ # Original Copyright 2019 Tomoki Hayashi
4
+ # MIT License (https://opensource.org/licenses/MIT)
5
+
6
+ """STFT-based Loss modules."""
7
+
8
+ import torch
9
+ import torch.nn.functional as F
10
+
11
+ from distutils.version import LooseVersion
12
+
13
+ is_pytorch_17plus = LooseVersion(torch.__version__) >= LooseVersion("1.7")
14
+
15
+ torch.manual_seed(0)
16
+
17
+
18
+ def stft(x, fft_size, hop_size, win_length, window):
19
+ """Perform STFT and convert to magnitude spectrogram.
20
+ Args:
21
+ x (Tensor): Input signal tensor (B, T).
22
+ fft_size (int): FFT size.
23
+ hop_size (int): Hop size.
24
+ win_length (int): Window length.
25
+ window (str): Window function type.
26
+ Returns:
27
+ Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
28
+ """
29
+ if is_pytorch_17plus:
30
+ x_stft = torch.stft(
31
+ x, fft_size, hop_size, win_length, window, return_complex=False
32
+ )
33
+ else:
34
+ x_stft = torch.stft(x, fft_size, hop_size, win_length, window)
35
+ real = x_stft[..., 0]
36
+ imag = x_stft[..., 1]
37
+
38
+ # NOTE(kan-bayashi): clamp is needed to avoid nan or inf
39
+ return torch.sqrt(torch.clamp(real**2 + imag**2, min=1e-7)).transpose(2, 1)
40
+
41
+
42
+ class SpectralConvergenceLoss(torch.nn.Module):
43
+ """Spectral convergence loss module."""
44
+
45
+ def __init__(self):
46
+ """Initilize spectral convergence loss module."""
47
+ super(SpectralConvergenceLoss, self).__init__()
48
+
49
+ def forward(self, x_mag, y_mag):
50
+ """Calculate forward propagation.
51
+ Args:
52
+ x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
53
+ y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
54
+
55
+ Returns:
56
+ Tensor: Spectral convergence loss value.
57
+
58
+ """
59
+ return torch.norm(y_mag - x_mag, p="fro") / torch.norm(y_mag, p="fro")
60
+
61
+
62
+ class LogSTFTMagnitudeLoss(torch.nn.Module):
63
+ """Log STFT magnitude loss module."""
64
+
65
+ def __init__(self):
66
+ """Initilize los STFT magnitude loss module."""
67
+ super(LogSTFTMagnitudeLoss, self).__init__()
68
+
69
+ def forward(self, x_mag, y_mag):
70
+ """Calculate forward propagation.
71
+ Args:
72
+ x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
73
+ y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
74
+
75
+ Returns:
76
+ Tensor: Log STFT magnitude loss value.
77
+ """
78
+ return F.l1_loss(torch.log(y_mag), torch.log(x_mag))
79
+
80
+
81
+ class STFTLoss(torch.nn.Module):
82
+ """STFT loss module."""
83
+
84
+ def __init__(
85
+ self, fft_size=1024, shift_size=120, win_length=600, window="hann_window",
86
+ band="full"
87
+ ):
88
+ """Initialize STFT loss module."""
89
+ super(STFTLoss, self).__init__()
90
+ self.fft_size = fft_size
91
+ self.shift_size = shift_size
92
+ self.win_length = win_length
93
+ self.band = band
94
+
95
+ self.spectral_convergence_loss = SpectralConvergenceLoss()
96
+ self.log_stft_magnitude_loss = LogSTFTMagnitudeLoss()
97
+ # NOTE(kan-bayashi): Use register_buffer to fix #223
98
+ self.register_buffer("window", getattr(torch, window)(win_length))
99
+
100
+ def forward(self, x, y):
101
+ """Calculate forward propagation.
102
+ Args:
103
+ x (Tensor): Predicted signal (B, T).
104
+ y (Tensor): Groundtruth signal (B, T).
105
+ Returns:
106
+ Tensor: Spectral convergence loss value.
107
+ Tensor: Log STFT magnitude loss value.
108
+ """
109
+ x_mag = stft(x, self.fft_size, self.shift_size, self.win_length, self.window)
110
+ y_mag = stft(y, self.fft_size, self.shift_size, self.win_length, self.window)
111
+
112
+ if self.band == "high":
113
+ freq_mask_ind = x_mag.shape[1] // 2 # only select high frequency bands
114
+ sc_loss = self.spectral_convergence_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:])
115
+ mag_loss = self.log_stft_magnitude_loss(x_mag[:,freq_mask_ind:,:], y_mag[:,freq_mask_ind:,:])
116
+ elif self.band == "full":
117
+ sc_loss = self.spectral_convergence_loss(x_mag, y_mag)
118
+ mag_loss = self.log_stft_magnitude_loss(x_mag, y_mag)
119
+ else:
120
+ raise NotImplementedError
121
+
122
+ return sc_loss, mag_loss
123
+
124
+
125
+ class MultiResolutionSTFTLoss(torch.nn.Module):
126
+ """Multi resolution STFT loss module."""
127
+
128
+ def __init__(
129
+ self, fft_sizes=[1024, 2048, 512], hop_sizes=[120, 240, 50], win_lengths=[600, 1200, 240],
130
+ window="hann_window", sc_lambda=0.1, mag_lambda=0.1, band="full"
131
+ ):
132
+ """Initialize Multi resolution STFT loss module.
133
+ Args:
134
+ fft_sizes (list): List of FFT sizes.
135
+ hop_sizes (list): List of hop sizes.
136
+ win_lengths (list): List of window lengths.
137
+ window (str): Window function type.
138
+ *_lambda (float): a balancing factor across different losses.
139
+ band (str): high-band or full-band loss
140
+ """
141
+ super(MultiResolutionSTFTLoss, self).__init__()
142
+ self.sc_lambda = sc_lambda
143
+ self.mag_lambda = mag_lambda
144
+
145
+ assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
146
+ self.stft_losses = torch.nn.ModuleList()
147
+ for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
148
+ self.stft_losses += [STFTLoss(fs, ss, wl, window, band)]
149
+
150
+ def forward(self, x, y):
151
+ """Calculate forward propagation.
152
+ Args:
153
+ x (Tensor): Predicted signal (B, T) or (B, #subband, T).
154
+ y (Tensor): Groundtruth signal (B, T) or (B, #subband, T).
155
+ Returns:
156
+ Tensor: Multi resolution spectral convergence loss value.
157
+ Tensor: Multi resolution log STFT magnitude loss value.
158
+ """
159
+ if len(x.shape) == 3:
160
+ x = x.view(-1, x.size(2)) # (B, C, T) -> (B x C, T)
161
+ y = y.view(-1, y.size(2)) # (B, C, T) -> (B x C, T)
162
+ sc_loss = 0.0
163
+ mag_loss = 0.0
164
+ for f in self.stft_losses:
165
+ sc_l, mag_l = f(x, y)
166
+ sc_loss += sc_l
167
+ mag_loss += mag_l
168
+
169
+ sc_loss *= self.sc_lambda
170
+ sc_loss /= len(self.stft_losses)
171
+ mag_loss *= self.mag_lambda
172
+ mag_loss /= len(self.stft_losses)
173
+
174
+ return sc_loss, mag_loss