Spaces:
Runtime error
Runtime error
import tempfile | |
import subprocess | |
import time | |
from typing import Optional | |
from AinaTheme import AinaGradioTheme | |
import gradio as gr | |
import numpy as np | |
import torch | |
import os | |
from TTS.utils.synthesizer import Synthesizer | |
from dotenv import load_dotenv | |
torch.manual_seed(0) | |
np.random.seed(0) | |
# CleanUnet Dependencies | |
import json | |
from copy import deepcopy | |
import numpy as np | |
import torch | |
# from util import print_size, sampling | |
import torchaudio | |
import torchaudio.transforms as T | |
import random | |
random.seed(0) | |
torch.manual_seed(0) | |
np.random.seed(0) | |
SAMPLE_RATE = 8000 | |
CONFIG = "configs/DNS-large-full.json" | |
# CHECKPOINT = "./exp/DNS-large-full/checkpoint/pretrained.pkl" | |
# Parse configs. Globals nicer in this case | |
with open(CONFIG) as f: | |
data = f.read() | |
config = json.loads(data) | |
gen_config = config["gen_config"] | |
global network_config | |
network_config = config["network_config"] # to define wavenet | |
global train_config | |
train_config = config["train_config"] # train config | |
global trainset_config | |
trainset_config = config["trainset_config"] # to read trainset configurations | |
# global use_denoise | |
# use_denoise = False | |
# setup local experiment path | |
exp_path = train_config["exp_path"] | |
print('exp_path:', exp_path) | |
# load data | |
loader_config = deepcopy(trainset_config) | |
loader_config["crop_length_sec"] = 0 | |
############################################################################################################# | |
load_dotenv() | |
MAX_INPUT_TEXT_LEN = int(os.environ.get("MAX_INPUT_TEXT_LEN", default=500)) | |
# Dynamically read model files, exclude 'speakers.pth' | |
model_files = [f for f in os.listdir(os.getcwd()) if f.endswith('.pth') and f != 'speakers.pth'] | |
model_files.sort(key=lambda x: os.path.getmtime(os.path.join(os.getcwd(), x)), reverse=True) | |
speakers_path = "speakers.pth" | |
speakers_list = torch.load(speakers_path) | |
speakers_list = list(speakers_list.keys()) | |
speakers_list = [speaker for speaker in speakers_list] | |
default_speaker_list = speakers_list # | |
# Filtered lists based on dataset | |
festcat_speakers = [s for s in speakers_list if len(s) == 3] # | |
google_speakers = [s for s in speakers_list if 3 < len(s) < 20] # | |
commonvoice_speakers = [s for s in speakers_list if len(s) > 20] # | |
DEFAULT_SPEAKER_ID = os.environ.get("DEFAULT_SPEAKER_ID", default="pau") | |
model_file = model_files[0] # change this!! | |
model_path = os.path.join(os.getcwd(), model_file) | |
config_path = "config.json" | |
vocoder_path = None | |
vocoder_config_path = None | |
synthesizer = Synthesizer( | |
model_path, config_path, speakers_path, None, vocoder_path, vocoder_config_path, | |
) | |
def get_phonetic_transcription(text: str): | |
try: | |
result = subprocess.run( | |
['espeak-ng', '--ipa', '-v', 'ca', text], | |
stdout=subprocess.PIPE, | |
stderr=subprocess.PIPE, | |
text=True, | |
check=True | |
) | |
return result.stdout.strip() | |
except subprocess.CalledProcessError as e: | |
print(f"An error occurred: {e}") | |
return None | |
def tts_inference(text: str, speaker_idx: str = None, use_denoise: int = 0): | |
# synthesize | |
if synthesizer is None: | |
raise NameError("model not found") | |
t1 = time.time() | |
wavs = synthesizer.tts(text, speaker_idx) | |
print(type(wavs)) | |
if use_denoise == 0: | |
wavs_den = torch.Tensor(wavs).unsqueeze(0) # one sample | |
# wavs_den = denoise(wavs_den).tolist() | |
else: | |
wavs_den = wavs | |
# return output | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: | |
# wavs must be a list of integers | |
synthesizer.save_wav(wavs, fp) | |
t2 = time.time() - t1 | |
print(round(t2, 2)) | |
output_audio = fp.name | |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp: | |
# wavs must be a list of integers | |
synthesizer.save_wav(wavs_den, fp) | |
output_audio_den = fp.name | |
return output_audio, output_audio_den | |
title = "🗣️ Catalan Multispeaker TTS Tester 🗣️" | |
description = """ | |
1️⃣ Enter the text to synthesize. | |
2️⃣ Select a voice from the dropdown menu. | |
3️⃣ Enjoy! | |
""" | |
def submit_input(input_, speaker_id, use_dn): | |
output_audio = None | |
output_phonetic = None | |
if input_ is not None and len(input_) < MAX_INPUT_TEXT_LEN: | |
output_audio, output_audio_den = tts_inference(input_, speaker_id, use_dn) | |
output_phonetic = get_phonetic_transcription(input_) | |
else: | |
gr.Warning(f"Your text exceeds the {MAX_INPUT_TEXT_LEN}-character limit.") | |
return output_audio, output_audio_den, output_phonetic | |
def change_interactive(text): | |
input_state = text | |
if input_state.strip() != "": | |
return gr.update(interactive=True) | |
else: | |
return gr.update(interactive=False) | |
def clean(): | |
return ( | |
None, | |
None, | |
) | |
with gr.Blocks(**AinaGradioTheme().get_kwargs()) as app: | |
gr.Markdown(f"<h1 style='text-align: center; margin-bottom: 1rem'>{title}</h1>") | |
gr.Markdown(description) | |
with gr.Row(equal_height=False): | |
with gr.Column(variant='panel'): | |
input_ = gr.Textbox( | |
label="Text", | |
value="Introdueix el text a sintetitzar.", | |
lines=4 | |
) | |
dataset = gr.Radio(["All", "Festcat", "Google TTS", "CommonVoice"], label="Speakers Dataset", | |
value="All") | |
def update_speaker_list(dataset): | |
print("Updating speaker list based on dataset:", dataset) | |
if dataset == "Festcat": | |
current_speakers = festcat_speakers | |
elif dataset == "Google TTS": | |
current_speakers = google_speakers | |
elif dataset == "CommonVoice": | |
current_speakers = commonvoice_speakers | |
else: | |
current_speakers = speakers_list | |
return gr.update(choices=current_speakers, value=current_speakers[0]) | |
speaker_id = gr.Dropdown(label="Select a voice", choices=speakers_list, value=DEFAULT_SPEAKER_ID, | |
interactive=True) | |
dataset.change(fn=update_speaker_list, inputs=dataset, outputs=speaker_id) | |
# model = gr.Dropdown(label="Select a model", choices=model_files, value=DEFAULT_MODEL_FILE_NAME) | |
with gr.Row(): | |
clear_btn = gr.ClearButton(value='Clean', components=[input_]) | |
# clear_btn = gr.Button( | |
# "Clean", | |
# ) | |
submit_btn = gr.Button( | |
"Submit", | |
variant="primary", | |
) | |
use_denoise = gr.Radio(choices=[("Yes", 0), ("No", 1)], value=0) | |
with gr.Column(variant='panel'): | |
output_audio = gr.Audio(label="Output", type="filepath", autoplay=True, show_share_button=False) | |
output_audio_den = gr.Audio(label="Output denoised", type="filepath", autoplay=False, | |
show_share_button=False) | |
output_phonetic = gr.Textbox(label="Phonetic Transcription", readonly=True) | |
for button in [submit_btn]: # clear_btn | |
input_.change(fn=change_interactive, inputs=[input_], outputs=button) | |
# clear_btn.click(fn=clean, inputs=[], outputs=[input_, output_audio, output_phonetic], queue=False) | |
submit_btn.click(fn=submit_input, inputs=[input_, speaker_id, use_denoise], outputs=[output_audio, | |
output_audio_den, | |
output_phonetic]) | |
app.queue(concurrency_count=1, api_open=False) | |
app.launch(show_api=False, server_name="0.0.0.0", server_port=7860) | |