Spaces:
Runtime error
Runtime error
# Copyright (c) 2022 NVIDIA CORPORATION. | |
# Licensed under the MIT license. | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from util import weight_scaling_init | |
torch.manual_seed(0) | |
np.random.seed(0) | |
# Transformer (encoder) https://github.com/jadore801120/attention-is-all-you-need-pytorch | |
# Original Copyright 2017 Victor Huang | |
# MIT License (https://opensource.org/licenses/MIT) | |
class ScaledDotProductAttention(nn.Module): | |
''' Scaled Dot-Product Attention ''' | |
def __init__(self, temperature, attn_dropout=0.1): | |
super().__init__() | |
self.temperature = temperature | |
self.dropout = nn.Dropout(attn_dropout) | |
def forward(self, q, k, v, mask=None): | |
attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) | |
if mask is not None: | |
_MASKING_VALUE = -1e9 if attn.dtype == torch.float32 else -1e4 | |
attn = attn.masked_fill(mask == 0, _MASKING_VALUE) | |
attn = self.dropout(F.softmax(attn, dim=-1)) | |
output = torch.matmul(attn, v) | |
return output, attn | |
class MultiHeadAttention(nn.Module): | |
''' Multi-Head Attention module ''' | |
def __init__(self, n_head, d_model, d_k, d_v, dropout=0.1): | |
super().__init__() | |
self.n_head = n_head | |
self.d_k = d_k | |
self.d_v = d_v | |
self.w_qs = nn.Linear(d_model, n_head * d_k, bias=False) | |
self.w_ks = nn.Linear(d_model, n_head * d_k, bias=False) | |
self.w_vs = nn.Linear(d_model, n_head * d_v, bias=False) | |
self.fc = nn.Linear(n_head * d_v, d_model, bias=False) | |
self.attention = ScaledDotProductAttention(temperature=d_k ** 0.5) | |
self.dropout = nn.Dropout(dropout) | |
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) | |
def forward(self, q, k, v, mask=None): | |
d_k, d_v, n_head = self.d_k, self.d_v, self.n_head | |
sz_b, len_q, len_k, len_v = q.size(0), q.size(1), k.size(1), v.size(1) | |
residual = q | |
# Pass through the pre-attention projection: b x lq x (n*dv) | |
# Separate different heads: b x lq x n x dv | |
q = self.w_qs(q).view(sz_b, len_q, n_head, d_k) | |
k = self.w_ks(k).view(sz_b, len_k, n_head, d_k) | |
v = self.w_vs(v).view(sz_b, len_v, n_head, d_v) | |
# Transpose for attention dot product: b x n x lq x dv | |
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) | |
if mask is not None: | |
mask = mask.unsqueeze(1) # For head axis broadcasting. | |
q, attn = self.attention(q, k, v, mask=mask) | |
# Transpose to move the head dimension back: b x lq x n x dv | |
# Combine the last two dimensions to concatenate all the heads together: b x lq x (n*dv) | |
q = q.transpose(1, 2).contiguous().view(sz_b, len_q, -1) | |
q = self.dropout(self.fc(q)) | |
q += residual | |
q = self.layer_norm(q) | |
return q, attn | |
class PositionwiseFeedForward(nn.Module): | |
''' A two-feed-forward-layer module ''' | |
def __init__(self, d_in, d_hid, dropout=0.1): | |
super().__init__() | |
self.w_1 = nn.Linear(d_in, d_hid) # position-wise | |
self.w_2 = nn.Linear(d_hid, d_in) # position-wise | |
self.layer_norm = nn.LayerNorm(d_in, eps=1e-6) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
residual = x | |
x = self.w_2(F.relu(self.w_1(x))) | |
x = self.dropout(x) | |
x += residual | |
x = self.layer_norm(x) | |
return x | |
def get_subsequent_mask(seq): | |
''' For masking out the subsequent info. ''' | |
sz_b, len_s = seq.size() | |
subsequent_mask = (1 - torch.triu( | |
torch.ones((1, len_s, len_s), device=seq.device), diagonal=1)).bool() | |
return subsequent_mask | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_hid, n_position=200): | |
super(PositionalEncoding, self).__init__() | |
# Not a parameter | |
self.register_buffer('pos_table', self._get_sinusoid_encoding_table(n_position, d_hid)) | |
def _get_sinusoid_encoding_table(self, n_position, d_hid): | |
''' Sinusoid position encoding table ''' | |
# TODO: make it with torch instead of numpy | |
def get_position_angle_vec(position): | |
return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] | |
sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) | |
sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i | |
sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 | |
return torch.FloatTensor(sinusoid_table).unsqueeze(0) | |
def forward(self, x): | |
return x + self.pos_table[:, :x.size(1)].clone().detach() | |
class EncoderLayer(nn.Module): | |
''' Compose with two layers ''' | |
def __init__(self, d_model, d_inner, n_head, d_k, d_v, dropout=0.0): | |
super(EncoderLayer, self).__init__() | |
self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout) | |
self.pos_ffn = PositionwiseFeedForward(d_model, d_inner, dropout=dropout) | |
def forward(self, enc_input, slf_attn_mask=None): | |
enc_output, enc_slf_attn = self.slf_attn( | |
enc_input, enc_input, enc_input, mask=slf_attn_mask) | |
enc_output = self.pos_ffn(enc_output) | |
return enc_output, enc_slf_attn | |
class TransformerEncoder(nn.Module): | |
''' A encoder model with self attention mechanism. ''' | |
def __init__( | |
self, d_word_vec=512, n_layers=2, n_head=8, d_k=64, d_v=64, | |
d_model=512, d_inner=2048, dropout=0.1, n_position=624, scale_emb=False): | |
super().__init__() | |
# self.src_word_emb = nn.Embedding(n_src_vocab, d_word_vec, padding_idx=pad_idx) | |
if n_position > 0: | |
self.position_enc = PositionalEncoding(d_word_vec, n_position=n_position) | |
else: | |
self.position_enc = lambda x: x | |
self.dropout = nn.Dropout(p=dropout) | |
self.layer_stack = nn.ModuleList([ | |
EncoderLayer(d_model, d_inner, n_head, d_k, d_v, dropout=dropout) | |
for _ in range(n_layers)]) | |
self.layer_norm = nn.LayerNorm(d_model, eps=1e-6) | |
self.scale_emb = scale_emb | |
self.d_model = d_model | |
def forward(self, src_seq, src_mask, return_attns=False): | |
enc_slf_attn_list = [] | |
# -- Forward | |
# enc_output = self.src_word_emb(src_seq) | |
enc_output = src_seq | |
if self.scale_emb: | |
enc_output *= self.d_model ** 0.5 | |
enc_output = self.dropout(self.position_enc(enc_output)) | |
enc_output = self.layer_norm(enc_output) | |
for enc_layer in self.layer_stack: | |
enc_output, enc_slf_attn = enc_layer(enc_output, slf_attn_mask=src_mask) | |
enc_slf_attn_list += [enc_slf_attn] if return_attns else [] | |
if return_attns: | |
return enc_output, enc_slf_attn_list | |
return enc_output | |
# CleanUNet architecture | |
def padding(x, D, K, S): | |
"""padding zeroes to x so that denoised audio has the same length""" | |
L = x.shape[-1] | |
for _ in range(D): | |
if L < K: | |
L = 1 | |
else: | |
L = 1 + np.ceil((L - K) / S) | |
for _ in range(D): | |
L = (L - 1) * S + K | |
L = int(L) | |
x = F.pad(x, (0, L - x.shape[-1])) | |
return x | |
class CleanUNet(nn.Module): | |
""" CleanUNet architecture. """ | |
def __init__(self, channels_input=1, channels_output=1, | |
channels_H=64, max_H=768, | |
encoder_n_layers=8, kernel_size=4, stride=2, | |
tsfm_n_layers=3, | |
tsfm_n_head=8, | |
tsfm_d_model=512, | |
tsfm_d_inner=2048): | |
""" | |
Parameters: | |
channels_input (int): input channels | |
channels_output (int): output channels | |
channels_H (int): middle channels H that controls capacity | |
max_H (int): maximum H | |
encoder_n_layers (int): number of encoder/decoder layers D | |
kernel_size (int): kernel size K | |
stride (int): stride S | |
tsfm_n_layers (int): number of self attention blocks N | |
tsfm_n_head (int): number of heads in each self attention block | |
tsfm_d_model (int): d_model of self attention | |
tsfm_d_inner (int): d_inner of self attention | |
""" | |
super(CleanUNet, self).__init__() | |
self.channels_input = channels_input | |
self.channels_output = channels_output | |
self.channels_H = channels_H | |
self.max_H = max_H | |
self.encoder_n_layers = encoder_n_layers | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.tsfm_n_layers = tsfm_n_layers | |
self.tsfm_n_head = tsfm_n_head | |
self.tsfm_d_model = tsfm_d_model | |
self.tsfm_d_inner = tsfm_d_inner | |
# encoder and decoder | |
self.encoder = nn.ModuleList() | |
self.decoder = nn.ModuleList() | |
for i in range(encoder_n_layers): | |
self.encoder.append(nn.Sequential( | |
nn.Conv1d(channels_input, channels_H, kernel_size, stride), | |
nn.ReLU(), | |
nn.Conv1d(channels_H, channels_H * 2, 1), | |
nn.GLU(dim=1) | |
)) | |
channels_input = channels_H | |
if i == 0: | |
# no relu at end | |
self.decoder.append(nn.Sequential( | |
nn.Conv1d(channels_H, channels_H * 2, 1), | |
nn.GLU(dim=1), | |
nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride) | |
)) | |
else: | |
self.decoder.insert(0, nn.Sequential( | |
nn.Conv1d(channels_H, channels_H * 2, 1), | |
nn.GLU(dim=1), | |
nn.ConvTranspose1d(channels_H, channels_output, kernel_size, stride), | |
nn.ReLU() | |
)) | |
channels_output = channels_H | |
# double H but keep below max_H | |
channels_H *= 2 | |
channels_H = min(channels_H, max_H) | |
# self attention block | |
self.tsfm_conv1 = nn.Conv1d(channels_output, tsfm_d_model, kernel_size=1) | |
self.tsfm_encoder = TransformerEncoder(d_word_vec=tsfm_d_model, | |
n_layers=tsfm_n_layers, | |
n_head=tsfm_n_head, | |
d_k=tsfm_d_model // tsfm_n_head, | |
d_v=tsfm_d_model // tsfm_n_head, | |
d_model=tsfm_d_model, | |
d_inner=tsfm_d_inner, | |
dropout=0.0, | |
n_position=0, | |
scale_emb=False) | |
self.tsfm_conv2 = nn.Conv1d(tsfm_d_model, channels_output, kernel_size=1) | |
# weight scaling initialization | |
for layer in self.modules(): | |
if isinstance(layer, (nn.Conv1d, nn.ConvTranspose1d)): | |
weight_scaling_init(layer) | |
def forward(self, noisy_audio): | |
# (B, L) -> (B, C, L) | |
if len(noisy_audio.shape) == 2: | |
noisy_audio = noisy_audio.unsqueeze(1) | |
B, C, L = noisy_audio.shape | |
assert C == 1 | |
# normalization and padding | |
std = noisy_audio.std(dim=2, keepdim=True) + 1e-3 | |
noisy_audio /= std | |
x = padding(noisy_audio, self.encoder_n_layers, self.kernel_size, self.stride) | |
# encoder | |
skip_connections = [] | |
for downsampling_block in self.encoder: | |
x = downsampling_block(x) | |
skip_connections.append(x) | |
skip_connections = skip_connections[::-1] | |
# attention mask for causal inference; for non-causal, set attn_mask to None | |
len_s = x.shape[-1] # length at bottleneck | |
attn_mask = (1 - torch.triu(torch.ones((1, len_s, len_s), device=x.device), diagonal=1)).bool() | |
x = self.tsfm_conv1(x) # C 1024 -> 512 | |
x = x.permute(0, 2, 1) | |
x = self.tsfm_encoder(x, src_mask=attn_mask) | |
x = x.permute(0, 2, 1) | |
x = self.tsfm_conv2(x) # C 512 -> 1024 | |
# decoder | |
for i, upsampling_block in enumerate(self.decoder): | |
skip_i = skip_connections[i] | |
x += skip_i[:, :, :x.shape[-1]] | |
x = upsampling_block(x) | |
x = x[:, :, :L] * std | |
return x | |
if __name__ == '__main__': | |
import json | |
import argparse | |
import os | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-c', '--config', type=str, default='configs/DNS-large-full.json', | |
help='JSON file for configuration') | |
args = parser.parse_args() | |
with open(args.config) as f: | |
data = f.read() | |
config = json.loads(data) | |
network_config = config["network_config"] | |
model = CleanUNet(**network_config).cuda() | |
from util import print_size | |
print_size(model, keyword="tsfm") | |
input_data = torch.ones([4,1,int(4.5*16000)]).cuda() | |
output = model(input_data) | |
print(output.shape) | |
y = torch.rand([4,1,int(4.5*16000)]).cuda() | |
loss = torch.nn.MSELoss()(y, output) | |
loss.backward() | |
print(loss.item()) | |