import streamlit as st import numpy as np import cv2 import tempfile from gradio_client import Client, handle_file from PIL import Image # Проверка доступности нового API client = Client("yeecin/img2text") # Заголовок приложения st.title("Video Frame to Image Description") # Загрузка видеофайла uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"]) cap = None # Инициализируем объект cap как None if uploaded_file is not None: tfile = tempfile.NamedTemporaryFile(delete=False) tfile.write(uploaded_file.read()) cap = cv2.VideoCapture(tfile.name) length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) if length > 0: random_frame = np.random.randint(length) cap.set(cv2.CAP_PROP_POS_FRAMES, random_frame) ret, frame = cap.read() if ret: frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) pil_image = Image.fromarray(frame_rgb) st.image(pil_image, caption=f"Random Frame {random_frame}") # Сохранение кадра во временный файл для API buf = tempfile.NamedTemporaryFile(suffix='.jpg', delete=False) pil_image.save(buf, format='JPEG') buf.close() try: # Вызов нового API для получения описания result = client.predict( raw_image=handle_file(buf.name), model_n="Image Captioning", strategy="Nucleus sampling", api_name="/predict" ) description = result st.success(f"Generated Description: {description}") except Exception as e: st.error(f"Error: Could not get a response from the model. {str(e)}") else: st.error("Error: Could not read a frame from the video.") else: st.error("Error: Video file does not contain any frames.") if cap is not None: cap.release()