Spaces:
Running
Running
AlexCool2024
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,71 +1,57 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import numpy as np
|
3 |
-
import cv2
|
4 |
-
import tempfile
|
5 |
-
from gradio_client import Client
|
6 |
-
from PIL import Image
|
7 |
-
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
)
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
tfile = tempfile.NamedTemporaryFile(delete=False)
|
28 |
-
tfile.write(uploaded_file.read())
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
33 |
|
34 |
-
if length > 0:
|
35 |
-
|
36 |
-
|
37 |
-
cap.
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
description = result['data']
|
61 |
-
st.success(f"Generated Description: {description}")
|
62 |
-
except Exception as e:
|
63 |
-
st.error(f"Error: Could not get a response from the model. {str(e)}")
|
64 |
-
else:
|
65 |
-
st.error("Error: Could not read a frame from the video.")
|
66 |
-
else:
|
67 |
-
st.error("Error: Video file does not contain any frames.")
|
68 |
-
|
69 |
-
# Проверяем, был ли cap создан, и только тогда освобождаем ресурсы
|
70 |
-
if cap is not None:
|
71 |
cap.release()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
import tempfile
|
5 |
+
from gradio_client import Client
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
# Проверка доступности API
|
9 |
+
api_url = "https://pragnakalp-ocr-image-to-text.hf.space/--replicas/lhzf3/"
|
10 |
+
try:
|
11 |
+
client = Client(api_url)
|
12 |
+
except Exception as e:
|
13 |
+
st.error(f"Failed to initialize client: {str(e)}")
|
14 |
+
st.stop()
|
15 |
+
|
16 |
+
# Заголовок приложения
|
17 |
+
st.title("Video Frame to Image Description")
|
18 |
+
|
19 |
+
# Загрузка видеофайла
|
20 |
+
uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])
|
21 |
+
|
22 |
+
cap = None # Инициализируем объект cap как None
|
23 |
+
|
24 |
+
if uploaded_file is not None:
|
25 |
+
tfile = tempfile.NamedTemporaryFile(delete=False)
|
26 |
+
tfile.write(uploaded_file.read())
|
|
|
|
|
27 |
|
28 |
+
cap = cv2.VideoCapture(tfile.name)
|
29 |
+
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
30 |
|
31 |
+
if length > 0:
|
32 |
+
random_frame = np.random.randint(length)
|
33 |
+
cap.set(cv2.CAP_PROP_POS_FRAMES, random_frame)
|
34 |
+
ret, frame = cap.read()
|
35 |
+
|
36 |
+
if ret:
|
37 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
38 |
+
pil_image = Image.fromarray(frame_rgb)
|
39 |
+
st.image(pil_image, caption=f"Random Frame {random_frame}")
|
40 |
+
|
41 |
+
buf = tempfile.NamedTemporaryFile(suffix='.jpg', delete=False)
|
42 |
+
pil_image.save(buf, format='JPEG')
|
43 |
+
buf.close()
|
44 |
+
|
45 |
+
try:
|
46 |
+
result = client.predict("PaddleOCR", buf.name, api_name="/predict")
|
47 |
+
description = result['data']
|
48 |
+
st.success(f"Generated Description: {description}")
|
49 |
+
except Exception as e:
|
50 |
+
st.error(f"Error: Could not get a response from the model. {str(e)}")
|
51 |
+
else:
|
52 |
+
st.error("Error: Could not read a frame from the video.")
|
53 |
+
else:
|
54 |
+
st.error("Error: Video file does not contain any frames.")
|
55 |
+
|
56 |
+
if cap is not None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
cap.release()
|