Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,22 @@
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
-
import
|
5 |
-
|
6 |
-
|
7 |
|
8 |
-
#
|
9 |
-
model_id = "nttdataspain/vit-gpt2-stablediffusion2-lora"
|
10 |
-
model = VisionEncoderDecoderModel.from_pretrained(model_id)
|
11 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
12 |
-
feature_extractor = ViTFeatureExtractor.from_pretrained(model_id)
|
13 |
-
|
14 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
-
model.to(device)
|
16 |
-
|
17 |
-
# Функция для получения текста из изображения
|
18 |
-
def predict(image):
|
19 |
-
img = image.convert('RGB')
|
20 |
-
model.eval()
|
21 |
-
pixel_values = feature_extractor(images=[img], return_tensors="pt").pixel_values.to(device)
|
22 |
-
with torch.no_grad():
|
23 |
-
output_ids = model.generate(pixel_values, max_length=16, num_beams=4, return_dict_in_generate=True).sequences
|
24 |
-
|
25 |
-
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True)
|
26 |
-
preds = [pred.strip() for pred in preds]
|
27 |
-
return preds[0]
|
28 |
-
|
29 |
-
# Streamlit интерфейс
|
30 |
st.title("Video Frame to Image Description")
|
31 |
|
32 |
# Загрузка видеофайла
|
33 |
uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])
|
34 |
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
cap = None # Инициализируем объект cap как None
|
36 |
|
37 |
if uploaded_file is not None:
|
@@ -50,16 +35,31 @@ if uploaded_file is not None:
|
|
50 |
ret, frame = cap.read()
|
51 |
|
52 |
if ret:
|
53 |
-
# Конвертация кадра OpenCV в PIL Image
|
54 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
55 |
-
pil_image = Image.fromarray(frame_rgb)
|
56 |
-
|
57 |
# Отображение выбранного кадра
|
58 |
-
st.image(
|
|
|
|
|
|
|
|
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
63 |
else:
|
64 |
st.error("Error: Could not read a frame from the video.")
|
65 |
else:
|
|
|
1 |
import streamlit as st
|
2 |
import numpy as np
|
3 |
import cv2
|
4 |
+
import requests
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
|
8 |
+
# Заголовок приложения
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
st.title("Video Frame to Image Description")
|
10 |
|
11 |
# Загрузка видеофайла
|
12 |
uploaded_file = st.file_uploader("Upload a video file", type=["mp4", "avi", "mov"])
|
13 |
|
14 |
+
try:
|
15 |
+
response = requests.get("https://hf.space")
|
16 |
+
print(f"Status Code: {response.status_code}")
|
17 |
+
except requests.exceptions.SSLError as e:
|
18 |
+
print("SSL error occurred:", e)
|
19 |
+
|
20 |
cap = None # Инициализируем объект cap как None
|
21 |
|
22 |
if uploaded_file is not None:
|
|
|
35 |
ret, frame = cap.read()
|
36 |
|
37 |
if ret:
|
|
|
|
|
|
|
|
|
38 |
# Отображение выбранного кадра
|
39 |
+
st.image(frame, channels="BGR", caption=f"Random Frame {random_frame}")
|
40 |
+
|
41 |
+
# Конвертация кадра в подходящий формат для отправки в модель
|
42 |
+
_, buf = cv2.imencode('.jpg', frame)
|
43 |
+
files = {'file': ('image.jpg', buf.tobytes(), 'image/jpeg')}
|
44 |
|
45 |
+
model_url = "https://hf.space/embed/nttdataspain/Image-To-Text-Lora-ViT/run/predict"
|
46 |
+
headers = {"Authorization": f"Bearer {os.getenv('HUGGINGFACE_TOKEN_READ')}"}
|
47 |
+
|
48 |
+
# Отправка изображения в модель
|
49 |
+
response = requests.post(
|
50 |
+
model_url,
|
51 |
+
headers=headers,
|
52 |
+
files=files,
|
53 |
+
verify=False
|
54 |
+
)
|
55 |
+
|
56 |
+
# Получение и отображение результата
|
57 |
+
if response.status_code == 200:
|
58 |
+
result = response.json()
|
59 |
+
description = result['data'][0]['generated_text']
|
60 |
+
st.success(f"Generated Description: {description}")
|
61 |
+
else:
|
62 |
+
st.error("Error: Could not get a response from the model.")
|
63 |
else:
|
64 |
st.error("Error: Could not read a frame from the video.")
|
65 |
else:
|