Spaces:
Runtime error
Runtime error
resource-consumption (#3)
Browse files- Remove caches and sample videos (a69cc9b946ad8f287bfd5408d81fff425ae392af)
- Ignore __pycache__ (5ec1f00964ee885250b942fe810cb1142f40514d)
- Reduce memory by ~1.7 GB, without affecting speed too much. (b8850be073dd7bf6f594579e4cd433b31383c771)
- Improve error reporting (7865d267ab23aeb9fd8dc00ba6bce2f679f2f865)
- Use PIL instead of path for image component. (4ebb8b5bbd3b8d5a32edb65fa63a43462252ccb6)
- .gitignore +1 -0
- app.py +103 -133
- outputs/000000.mp4 +0 -0
- outputs/000001.mp4 +0 -0
- outputs/000002.mp4 +0 -0
- outputs/000003.mp4 +0 -0
- outputs/000004.mp4 +0 -3
- outputs/000005.mp4 +0 -0
- outputs/simple_video_sample/svd_xt/000000.mp4 +0 -0
- scripts/__pycache__/__init__.cpython-310.pyc +0 -0
- scripts/util/__pycache__/__init__.cpython-310.pyc +0 -0
- scripts/util/detection/__pycache__/__init__.cpython-310.pyc +0 -0
- scripts/util/detection/__pycache__/nsfw_and_watermark_dectection.cpython-310.pyc +0 -0
- sgm/__pycache__/__init__.cpython-310.pyc +0 -0
- sgm/__pycache__/util.cpython-310.pyc +0 -0
- sgm/inference/__pycache__/helpers.cpython-310.pyc +0 -0
- sgm/models/__pycache__/__init__.cpython-310.pyc +0 -0
- sgm/models/__pycache__/autoencoder.cpython-310.pyc +0 -0
- sgm/models/__pycache__/diffusion.cpython-310.pyc +0 -0
- sgm/modules/__pycache__/__init__.cpython-310.pyc +0 -0
- sgm/modules/__pycache__/attention.cpython-310.pyc +0 -0
- sgm/modules/__pycache__/ema.cpython-310.pyc +0 -0
- sgm/modules/__pycache__/video_attention.cpython-310.pyc +0 -0
- sgm/modules/autoencoding/__pycache__/__init__.cpython-310.pyc +0 -0
- sgm/modules/autoencoding/__pycache__/temporal_ae.cpython-310.pyc +0 -0
- sgm/modules/autoencoding/regularizers/__pycache__/__init__.cpython-310.pyc +0 -0
- sgm/modules/autoencoding/regularizers/__pycache__/base.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/denoiser.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/denoiser_scaling.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/discretizer.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/guiders.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/sampling.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/sampling_utils.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/video_model.cpython-310.pyc +0 -0
- sgm/modules/diffusionmodules/__pycache__/wrappers.cpython-310.pyc +0 -0
- sgm/modules/distributions/__pycache__/__init__.cpython-310.pyc +0 -0
- sgm/modules/distributions/__pycache__/distributions.cpython-310.pyc +0 -0
- sgm/modules/encoders/__pycache__/__init__.cpython-310.pyc +0 -0
- sgm/modules/encoders/__pycache__/modules.cpython-310.pyc +0 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
__pycache__/
|
app.py
CHANGED
@@ -69,158 +69,130 @@ model, filter = load_model(
|
|
69 |
)
|
70 |
|
71 |
def sample(
|
72 |
-
|
73 |
seed: Optional[int] = None,
|
74 |
randomize_seed: bool = True,
|
75 |
motion_bucket_id: int = 127,
|
76 |
fps_id: int = 6,
|
77 |
version: str = "svd_xt",
|
78 |
cond_aug: float = 0.02,
|
79 |
-
decoding_t: int =
|
80 |
device: str = "cuda",
|
81 |
output_folder: str = "outputs",
|
82 |
progress=gr.Progress(track_tqdm=True)
|
83 |
):
|
84 |
-
"""
|
85 |
-
Simple script to generate a single sample conditioned on an image `input_path` or multiple images, one for each
|
86 |
-
image file in folder `input_path`. If you run out of VRAM, try decreasing `decoding_t`.
|
87 |
-
"""
|
88 |
if(randomize_seed):
|
89 |
seed = random.randint(0, max_64_bit_int)
|
90 |
|
91 |
torch.manual_seed(seed)
|
92 |
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
)
|
108 |
-
if len(all_img_paths) == 0:
|
109 |
-
raise ValueError("Folder does not contain any images.")
|
110 |
-
else:
|
111 |
-
raise ValueError
|
112 |
-
|
113 |
-
for input_img_path in all_img_paths:
|
114 |
-
with Image.open(input_img_path) as image:
|
115 |
-
if image.mode == "RGBA":
|
116 |
-
image = image.convert("RGB")
|
117 |
-
w, h = image.size
|
118 |
-
|
119 |
-
if h % 64 != 0 or w % 64 != 0:
|
120 |
-
width, height = map(lambda x: x - x % 64, (w, h))
|
121 |
-
image = image.resize((width, height))
|
122 |
-
print(
|
123 |
-
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
124 |
-
)
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
)
|
139 |
-
|
140 |
-
|
141 |
-
|
|
|
|
|
|
|
|
|
142 |
)
|
143 |
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
value_dict = {}
|
151 |
-
value_dict["motion_bucket_id"] = motion_bucket_id
|
152 |
-
value_dict["fps_id"] = fps_id
|
153 |
-
value_dict["cond_aug"] = cond_aug
|
154 |
-
value_dict["cond_frames_without_noise"] = image
|
155 |
-
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
156 |
-
value_dict["cond_aug"] = cond_aug
|
157 |
-
|
158 |
-
with torch.no_grad():
|
159 |
-
with torch.autocast(device):
|
160 |
-
batch, batch_uc = get_batch(
|
161 |
-
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
162 |
-
value_dict,
|
163 |
-
[1, num_frames],
|
164 |
-
T=num_frames,
|
165 |
-
device=device,
|
166 |
-
)
|
167 |
-
c, uc = model.conditioner.get_unconditional_conditioning(
|
168 |
-
batch,
|
169 |
-
batch_uc=batch_uc,
|
170 |
-
force_uc_zero_embeddings=[
|
171 |
-
"cond_frames",
|
172 |
-
"cond_frames_without_noise",
|
173 |
-
],
|
174 |
-
)
|
175 |
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
additional_model_inputs = {}
|
185 |
-
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
186 |
-
2, num_frames
|
187 |
-
).to(device)
|
188 |
-
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
189 |
-
|
190 |
-
def denoiser(input, sigma, c):
|
191 |
-
return model.denoiser(
|
192 |
-
model.model, input, sigma, c, **additional_model_inputs
|
193 |
-
)
|
194 |
-
|
195 |
-
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
196 |
-
model.en_and_decode_n_samples_a_time = decoding_t
|
197 |
-
samples_x = model.decode_first_stage(samples_z)
|
198 |
-
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
199 |
-
|
200 |
-
os.makedirs(output_folder, exist_ok=True)
|
201 |
-
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
202 |
-
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
203 |
-
writer = cv2.VideoWriter(
|
204 |
-
video_path,
|
205 |
-
cv2.VideoWriter_fourcc(*"mp4v"),
|
206 |
-
fps_id + 1,
|
207 |
-
(samples.shape[-1], samples.shape[-2]),
|
208 |
-
)
|
209 |
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
(rearrange(samples, "t c h w -> t h w c") * 255)
|
214 |
-
.cpu()
|
215 |
-
.numpy()
|
216 |
-
.astype(np.uint8)
|
217 |
)
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
224 |
|
225 |
def get_unique_embedder_keys_from_conditioner(conditioner):
|
226 |
return list(set([x.input_key for x in conditioner.embedders]))
|
@@ -266,8 +238,7 @@ def get_batch(keys, value_dict, N, T, device):
|
|
266 |
batch_uc[key] = torch.clone(batch[key])
|
267 |
return batch, batch_uc
|
268 |
|
269 |
-
def resize_image(
|
270 |
-
image = Image.open(image_path)
|
271 |
# Calculate aspect ratios
|
272 |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
273 |
image_aspect = image.width / image.height # Aspect ratio of the original image
|
@@ -296,7 +267,6 @@ def resize_image(image_path, output_size=(1024, 576)):
|
|
296 |
|
297 |
# Crop the image
|
298 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
299 |
-
|
300 |
return cropped_image
|
301 |
|
302 |
with gr.Blocks() as demo:
|
@@ -305,7 +275,7 @@ with gr.Blocks() as demo:
|
|
305 |
''')
|
306 |
with gr.Row():
|
307 |
with gr.Column():
|
308 |
-
image = gr.Image(label="Upload your image", type="
|
309 |
generate_btn = gr.Button("Generate")
|
310 |
video = gr.Video()
|
311 |
with gr.Accordion("Advanced options", open=False):
|
|
|
69 |
)
|
70 |
|
71 |
def sample(
|
72 |
+
image: Image,
|
73 |
seed: Optional[int] = None,
|
74 |
randomize_seed: bool = True,
|
75 |
motion_bucket_id: int = 127,
|
76 |
fps_id: int = 6,
|
77 |
version: str = "svd_xt",
|
78 |
cond_aug: float = 0.02,
|
79 |
+
decoding_t: int = 5, # Number of frames decoded at a time! This eats most VRAM. Reduce if necessary.
|
80 |
device: str = "cuda",
|
81 |
output_folder: str = "outputs",
|
82 |
progress=gr.Progress(track_tqdm=True)
|
83 |
):
|
|
|
|
|
|
|
|
|
84 |
if(randomize_seed):
|
85 |
seed = random.randint(0, max_64_bit_int)
|
86 |
|
87 |
torch.manual_seed(seed)
|
88 |
|
89 |
+
if image.mode == "RGBA":
|
90 |
+
image = image.convert("RGB")
|
91 |
+
w, h = image.size
|
92 |
+
|
93 |
+
if h % 64 != 0 or w % 64 != 0:
|
94 |
+
width, height = map(lambda x: x - x % 64, (w, h))
|
95 |
+
image = image.resize((width, height))
|
96 |
+
print(
|
97 |
+
f"WARNING: Your image is of size {h}x{w} which is not divisible by 64. We are resizing to {height}x{width}!"
|
98 |
+
)
|
99 |
+
|
100 |
+
image = ToTensor()(image)
|
101 |
+
image = image * 2.0 - 1.0
|
102 |
+
image = image.unsqueeze(0).to(device)
|
103 |
+
H, W = image.shape[2:]
|
104 |
+
assert image.shape[1] == 3
|
105 |
+
F = 8
|
106 |
+
C = 4
|
107 |
+
shape = (num_frames, C, H // F, W // F)
|
108 |
+
if (H, W) != (576, 1024):
|
109 |
+
print(
|
110 |
+
"WARNING: The conditioning frame you provided is not 576x1024. This leads to suboptimal performance as model was only trained on 576x1024. Consider increasing `cond_aug`."
|
111 |
+
)
|
112 |
+
if motion_bucket_id > 255:
|
113 |
+
print(
|
114 |
+
"WARNING: High motion bucket! This may lead to suboptimal performance."
|
115 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
+
if fps_id < 5:
|
118 |
+
print("WARNING: Small fps value! This may lead to suboptimal performance.")
|
119 |
+
|
120 |
+
if fps_id > 30:
|
121 |
+
print("WARNING: Large fps value! This may lead to suboptimal performance.")
|
122 |
+
|
123 |
+
value_dict = {}
|
124 |
+
value_dict["motion_bucket_id"] = motion_bucket_id
|
125 |
+
value_dict["fps_id"] = fps_id
|
126 |
+
value_dict["cond_aug"] = cond_aug
|
127 |
+
value_dict["cond_frames_without_noise"] = image
|
128 |
+
value_dict["cond_frames"] = image + cond_aug * torch.randn_like(image)
|
129 |
+
value_dict["cond_aug"] = cond_aug
|
130 |
+
|
131 |
+
with torch.no_grad():
|
132 |
+
with torch.autocast(device):
|
133 |
+
batch, batch_uc = get_batch(
|
134 |
+
get_unique_embedder_keys_from_conditioner(model.conditioner),
|
135 |
+
value_dict,
|
136 |
+
[1, num_frames],
|
137 |
+
T=num_frames,
|
138 |
+
device=device,
|
139 |
)
|
140 |
+
c, uc = model.conditioner.get_unconditional_conditioning(
|
141 |
+
batch,
|
142 |
+
batch_uc=batch_uc,
|
143 |
+
force_uc_zero_embeddings=[
|
144 |
+
"cond_frames",
|
145 |
+
"cond_frames_without_noise",
|
146 |
+
],
|
147 |
)
|
148 |
|
149 |
+
for k in ["crossattn", "concat"]:
|
150 |
+
uc[k] = repeat(uc[k], "b ... -> b t ...", t=num_frames)
|
151 |
+
uc[k] = rearrange(uc[k], "b t ... -> (b t) ...", t=num_frames)
|
152 |
+
c[k] = repeat(c[k], "b ... -> b t ...", t=num_frames)
|
153 |
+
c[k] = rearrange(c[k], "b t ... -> (b t) ...", t=num_frames)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
|
155 |
+
randn = torch.randn(shape, device=device)
|
156 |
+
|
157 |
+
additional_model_inputs = {}
|
158 |
+
additional_model_inputs["image_only_indicator"] = torch.zeros(
|
159 |
+
2, num_frames
|
160 |
+
).to(device)
|
161 |
+
additional_model_inputs["num_video_frames"] = batch["num_video_frames"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
+
def denoiser(input, sigma, c):
|
164 |
+
return model.denoiser(
|
165 |
+
model.model, input, sigma, c, **additional_model_inputs
|
|
|
|
|
|
|
|
|
166 |
)
|
167 |
+
|
168 |
+
samples_z = model.sampler(denoiser, randn, cond=c, uc=uc)
|
169 |
+
model.en_and_decode_n_samples_a_time = decoding_t
|
170 |
+
samples_x = model.decode_first_stage(samples_z)
|
171 |
+
samples = torch.clamp((samples_x + 1.0) / 2.0, min=0.0, max=1.0)
|
172 |
+
|
173 |
+
os.makedirs(output_folder, exist_ok=True)
|
174 |
+
base_count = len(glob(os.path.join(output_folder, "*.mp4")))
|
175 |
+
video_path = os.path.join(output_folder, f"{base_count:06d}.mp4")
|
176 |
+
writer = cv2.VideoWriter(
|
177 |
+
video_path,
|
178 |
+
cv2.VideoWriter_fourcc(*"mp4v"),
|
179 |
+
fps_id + 1,
|
180 |
+
(samples.shape[-1], samples.shape[-2]),
|
181 |
+
)
|
182 |
+
|
183 |
+
samples = embed_watermark(samples)
|
184 |
+
samples = filter(samples)
|
185 |
+
vid = (
|
186 |
+
(rearrange(samples, "t c h w -> t h w c") * 255)
|
187 |
+
.cpu()
|
188 |
+
.numpy()
|
189 |
+
.astype(np.uint8)
|
190 |
+
)
|
191 |
+
for frame in vid:
|
192 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
193 |
+
writer.write(frame)
|
194 |
+
writer.release()
|
195 |
+
return video_path, seed
|
196 |
|
197 |
def get_unique_embedder_keys_from_conditioner(conditioner):
|
198 |
return list(set([x.input_key for x in conditioner.embedders]))
|
|
|
238 |
batch_uc[key] = torch.clone(batch[key])
|
239 |
return batch, batch_uc
|
240 |
|
241 |
+
def resize_image(image, output_size=(1024, 576)):
|
|
|
242 |
# Calculate aspect ratios
|
243 |
target_aspect = output_size[0] / output_size[1] # Aspect ratio of the desired size
|
244 |
image_aspect = image.width / image.height # Aspect ratio of the original image
|
|
|
267 |
|
268 |
# Crop the image
|
269 |
cropped_image = resized_image.crop((left, top, right, bottom))
|
|
|
270 |
return cropped_image
|
271 |
|
272 |
with gr.Blocks() as demo:
|
|
|
275 |
''')
|
276 |
with gr.Row():
|
277 |
with gr.Column():
|
278 |
+
image = gr.Image(label="Upload your image", type="pil")
|
279 |
generate_btn = gr.Button("Generate")
|
280 |
video = gr.Video()
|
281 |
with gr.Accordion("Advanced options", open=False):
|
outputs/000000.mp4
DELETED
Binary file (297 kB)
|
|
outputs/000001.mp4
DELETED
Binary file (297 kB)
|
|
outputs/000002.mp4
DELETED
Binary file (255 kB)
|
|
outputs/000003.mp4
DELETED
Binary file (288 kB)
|
|
outputs/000004.mp4
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:c2cc34e39dd8c5d2022de56d1d83936ac2b7a286ab0351895f1b83e00a9e2fa7
|
3 |
-
size 1574414
|
|
|
|
|
|
|
|
outputs/000005.mp4
DELETED
Binary file (265 kB)
|
|
outputs/simple_video_sample/svd_xt/000000.mp4
DELETED
Binary file (298 kB)
|
|
scripts/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (154 Bytes)
|
|
scripts/util/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (159 Bytes)
|
|
scripts/util/detection/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (169 Bytes)
|
|
scripts/util/detection/__pycache__/nsfw_and_watermark_dectection.cpython-310.pyc
DELETED
Binary file (3.9 kB)
|
|
sgm/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (330 Bytes)
|
|
sgm/__pycache__/util.cpython-310.pyc
DELETED
Binary file (9.45 kB)
|
|
sgm/inference/__pycache__/helpers.cpython-310.pyc
DELETED
Binary file (8.87 kB)
|
|
sgm/models/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (260 Bytes)
|
|
sgm/models/__pycache__/autoencoder.cpython-310.pyc
DELETED
Binary file (19.2 kB)
|
|
sgm/models/__pycache__/diffusion.cpython-310.pyc
DELETED
Binary file (10.9 kB)
|
|
sgm/modules/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (321 Bytes)
|
|
sgm/modules/__pycache__/attention.cpython-310.pyc
DELETED
Binary file (18 kB)
|
|
sgm/modules/__pycache__/ema.cpython-310.pyc
DELETED
Binary file (3.22 kB)
|
|
sgm/modules/__pycache__/video_attention.cpython-310.pyc
DELETED
Binary file (6.27 kB)
|
|
sgm/modules/autoencoding/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (171 Bytes)
|
|
sgm/modules/autoencoding/__pycache__/temporal_ae.cpython-310.pyc
DELETED
Binary file (8.48 kB)
|
|
sgm/modules/autoencoding/regularizers/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (1.5 kB)
|
|
sgm/modules/autoencoding/regularizers/__pycache__/base.cpython-310.pyc
DELETED
Binary file (2.04 kB)
|
|
sgm/modules/diffusionmodules/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (175 Bytes)
|
|
sgm/modules/diffusionmodules/__pycache__/denoiser.cpython-310.pyc
DELETED
Binary file (3.09 kB)
|
|
sgm/modules/diffusionmodules/__pycache__/denoiser_scaling.cpython-310.pyc
DELETED
Binary file (2.45 kB)
|
|
sgm/modules/diffusionmodules/__pycache__/discretizer.cpython-310.pyc
DELETED
Binary file (3 kB)
|
|
sgm/modules/diffusionmodules/__pycache__/guiders.cpython-310.pyc
DELETED
Binary file (3.96 kB)
|
|
sgm/modules/diffusionmodules/__pycache__/model.cpython-310.pyc
DELETED
Binary file (16.5 kB)
|
|
sgm/modules/diffusionmodules/__pycache__/openaimodel.cpython-310.pyc
DELETED
Binary file (21.7 kB)
|
|
sgm/modules/diffusionmodules/__pycache__/sampling.cpython-310.pyc
DELETED
Binary file (11.8 kB)
|
|
sgm/modules/diffusionmodules/__pycache__/sampling_utils.cpython-310.pyc
DELETED
Binary file (1.53 kB)
|
|
sgm/modules/diffusionmodules/__pycache__/util.cpython-310.pyc
DELETED
Binary file (11.7 kB)
|
|
sgm/modules/diffusionmodules/__pycache__/video_model.cpython-310.pyc
DELETED
Binary file (8.21 kB)
|
|
sgm/modules/diffusionmodules/__pycache__/wrappers.cpython-310.pyc
DELETED
Binary file (1.69 kB)
|
|
sgm/modules/distributions/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (172 Bytes)
|
|
sgm/modules/distributions/__pycache__/distributions.cpython-310.pyc
DELETED
Binary file (3.77 kB)
|
|
sgm/modules/encoders/__pycache__/__init__.cpython-310.pyc
DELETED
Binary file (167 Bytes)
|
|
sgm/modules/encoders/__pycache__/modules.cpython-310.pyc
DELETED
Binary file (29.5 kB)
|
|