|
import os |
|
import gradio as gr |
|
import json |
|
import logging |
|
import torch |
|
from PIL import Image |
|
from os import path |
|
from torchvision import transforms |
|
from dataclasses import dataclass |
|
import math |
|
from typing import Callable |
|
import spaces |
|
from diffusers import DiffusionPipeline, AutoencoderTiny, AutoencoderKL |
|
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler |
|
from transformers import CLIPModel, CLIPProcessor, CLIPTextModel, CLIPTokenizer, CLIPConfig, T5EncoderModel, T5Tokenizer |
|
from diffusers.models.transformers import FluxTransformer2DModel |
|
import copy |
|
import random |
|
import time |
|
import safetensors.torch |
|
from tqdm import tqdm |
|
from safetensors.torch import load_file |
|
from huggingface_hub import HfFileSystem, ModelCard |
|
from huggingface_hub import login, hf_hub_download |
|
hf_token = os.environ.get("HF_TOKEN") |
|
login(token=hf_token) |
|
|
|
cache_path = path.join(path.dirname(path.abspath(__file__)), "models") |
|
os.environ["TRANSFORMERS_CACHE"] = cache_path |
|
os.environ["HF_HUB_CACHE"] = cache_path |
|
os.environ["HF_HOME"] = cache_path |
|
|
|
|
|
|
|
|
|
with open('loras.json', 'r') as f: |
|
loras = json.load(f) |
|
|
|
|
|
dtype = torch.bfloat16 |
|
base_model = "AlekseyCalvin/Artsy_Lite_Flux_v1_by_jurdn_Diffusers" |
|
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype).to("cuda") |
|
|
|
torch.cuda.empty_cache() |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
model_id = ("zer0int/LongCLIP-GmP-ViT-L-14") |
|
config = CLIPConfig.from_pretrained(model_id) |
|
config.text_config.max_position_embeddings = 248 |
|
clip_model = CLIPModel.from_pretrained(model_id, torch_dtype=torch.bfloat16, config=config, ignore_mismatched_sizes=True) |
|
clip_processor = CLIPProcessor.from_pretrained(model_id, padding="max_length", max_length=248) |
|
pipe.tokenizer = clip_processor.tokenizer |
|
pipe.text_encoder = clip_model.text_model |
|
pipe.tokenizer_max_length = 248 |
|
pipe.text_encoder.dtype = torch.bfloat16 |
|
|
|
|
|
MAX_SEED = 2**32-1 |
|
|
|
class calculateDuration: |
|
def __init__(self, activity_name=""): |
|
self.activity_name = activity_name |
|
|
|
def __enter__(self): |
|
self.start_time = time.time() |
|
return self |
|
|
|
def __exit__(self, exc_type, exc_value, traceback): |
|
self.end_time = time.time() |
|
self.elapsed_time = self.end_time - self.start_time |
|
if self.activity_name: |
|
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds") |
|
else: |
|
print(f"Elapsed time: {self.elapsed_time:.6f} seconds") |
|
|
|
|
|
def update_selection(evt: gr.SelectData, width, height): |
|
selected_lora = loras[evt.index] |
|
new_placeholder = f"Prompt with activator word(s): '{selected_lora['trigger_word']}'! " |
|
lora_repo = selected_lora["repo"] |
|
lora_trigger = selected_lora['trigger_word'] |
|
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co./{lora_repo}). Prompt using: '{lora_trigger}'!" |
|
if "aspect" in selected_lora: |
|
if selected_lora["aspect"] == "portrait": |
|
width = 768 |
|
height = 1024 |
|
elif selected_lora["aspect"] == "landscape": |
|
width = 1024 |
|
height = 768 |
|
return ( |
|
gr.update(placeholder=new_placeholder), |
|
updated_text, |
|
evt.index, |
|
width, |
|
height, |
|
) |
|
|
|
@spaces.GPU(duration=50) |
|
def generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress): |
|
pipe.to("cuda") |
|
generator = torch.Generator(device="cuda").manual_seed(seed) |
|
|
|
with calculateDuration("Generating image"): |
|
|
|
image = pipe( |
|
prompt=f"{prompt} {trigger_word}", |
|
num_inference_steps=steps, |
|
guidance_scale=cfg_scale, |
|
width=width, |
|
height=height, |
|
generator=generator, |
|
joint_attention_kwargs={"scale": lora_scale}, |
|
).images[0] |
|
return image |
|
|
|
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)): |
|
if selected_index is None: |
|
raise gr.Error("You must select a LoRA before proceeding.") |
|
|
|
selected_lora = loras[selected_index] |
|
lora_path = selected_lora["repo"] |
|
trigger_word = selected_lora['trigger_word'] |
|
|
|
|
|
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"): |
|
if "weights" in selected_lora: |
|
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"]) |
|
else: |
|
pipe.load_lora_weights(lora_path) |
|
|
|
|
|
with calculateDuration("Randomizing seed"): |
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
image = generate_image(prompt, trigger_word, steps, seed, cfg_scale, width, height, lora_scale, progress) |
|
pipe.to("cpu") |
|
pipe.unload_lora_weights() |
|
return image, seed |
|
|
|
run_lora.zerogpu = True |
|
|
|
css = ''' |
|
#gen_btn{height: 100%} |
|
#title{text-align: center} |
|
#title h1{font-size: 3em; display:inline-flex; align-items:center} |
|
#title img{width: 100px; margin-right: 0.5em} |
|
#gallery .grid-wrap{height: 10vh} |
|
''' |
|
with gr.Blocks(theme=gr.themes.Soft(), css=css) as app: |
|
title = gr.HTML( |
|
"""<h1><img src="https://huggingface.co./spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> SOONfactory </h1>""", |
|
elem_id="title", |
|
) |
|
|
|
info_blob = gr.HTML( |
|
"""<div id="info_blob"> Hosted Gallery of Custom-Trained Text2Image Generative Low-Rank Adaptors (LoRAs) for FLUX models. Running On: ArtsyLite FLUX base variant. First 4 gallery rows are adapters fine-tuned for the use of RCA (Revolutionary Communists of America at [https://CommunistUSA.org/]), & other activists/artists. Below them are adapters trained on works of Soviet Avant-Garde, Dada, Surrealism, & other radical styles + some original conceptions/fusions. Under those are identity models of notable revolutionaries & poets. Click squares to switch adapters & see links to their pages, many of them offering more info/resources. </div>""" |
|
) |
|
|
|
|
|
info_blob = gr.HTML( |
|
"""<div id="info_blob"> To reinforce/focus a selected adapter style, add its pre-encoded “trigger" word/phrase to your prompt. Corresponding activator info &/or prompt template appears once an adapter square is clicked. Copy/Paste these into prompt box as a starting point. </div>""" |
|
) |
|
selected_index = gr.State(None) |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
prompt = gr.Textbox(label="Prompt", lines=2, placeholder="Select LoRa/Style & type prompt!") |
|
with gr.Column(scale=1, elem_id="gen_column"): |
|
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn") |
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
selected_info = gr.Markdown("") |
|
gallery = gr.Gallery( |
|
[(item["image"], item["title"]) for item in loras], |
|
label="LoRA Inventory", |
|
allow_preview=False, |
|
columns=3, |
|
elem_id="gallery" |
|
) |
|
|
|
with gr.Column(scale=4): |
|
result = gr.Image(label="Generated Image") |
|
|
|
with gr.Row(): |
|
with gr.Accordion("Advanced Settings", open=True): |
|
with gr.Column(): |
|
with gr.Row(): |
|
cfg_scale = gr.Slider(label="CFG Scale", minimum=0, maximum=20, step=.1, value=1.0) |
|
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=9) |
|
|
|
with gr.Row(): |
|
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024) |
|
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024) |
|
|
|
with gr.Row(): |
|
randomize_seed = gr.Checkbox(True, label="Randomize seed") |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True) |
|
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=2.5, step=0.01, value=1.0) |
|
|
|
gallery.select( |
|
update_selection, |
|
inputs=[width, height], |
|
outputs=[prompt, selected_info, selected_index, width, height] |
|
) |
|
|
|
gr.on( |
|
triggers=[generate_button.click, prompt.submit], |
|
fn=run_lora, |
|
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale], |
|
outputs=[result, seed] |
|
) |
|
|
|
app.queue(default_concurrency_limit=2).launch(show_error=True) |
|
app.launch() |
|
|