import gradio class Model: def __init__(self, name, path="", prefix=""): self.name = name self.path = path self.prefix = prefix models = [ Model("Marvel","models/ItsJayQz/Marvel_WhatIf_Diffusion", "whatif style"), Model("Cyberpunk Anime Diffusion", "models/DGSpitzer/Cyberpunk-Anime-Diffusion", "dgs illustration style"), Model("Portrait plus", "models/wavymulder/portraitplus", "portrait+ style"), Model("CF25", "models/gsdf/Counterfeit-V2.5", "anime style"), Model("vintedois", "models/22h/vintedois-diffusion-v0-1", "vintedois style"), Model("dreamlike", "models/dreamlike-art/dreamlike-diffusion-1.0","dreamlike style"), #Model("Orange Mix","models/WarriorMama777/OrangeMixs", "OrangeMixs style"), Model("GTA5","models/ItsJayQz/GTA5_Artwork_Diffusion", "GTA5 style") ] model1=[] model2=[] model3=[] for i in range(len(models)): model3.append(models[i].name) model1.append(gradio.Interface.load(models[i].path)) model2.append(models[i].prefix) def process1(prompt, modelSelected): if (modelSelected==''): modelSelected = "Marvel" model_idx=model3.index(modelSelected) prompt+=", in "+model2[model_idx] image_return = model1[model_idx](prompt) return image_return sandbox = gradio.Interface(fn=process1, inputs=[gradio.Textbox(label="Enter Prompt:"), gradio.Dropdown(model3)], outputs=[gradio.Image(label="Produced Image")], title='Text to Image') sandbox.queue(concurrency_count=20).launch()