import gradio as gr import os import torch from model import create_effnetb2_model from timeit import default_timer as timer from typing import Tuple, Dict ############################################## # 1. Setup class names ############################################## class_names = ['art_nouveau', 'baroque', 'expressionism', 'impressionism', 'post_impressionism', 'realism', 'renaissance', 'romanticism', 'surrealism', 'ukiyo_e'] ############################################## # 2. Model and transforms preparation ############################################## # 2.1 Create EfficientNet_B2 model EfficientNetB2_model, EfficientNetB2_transforms = create_effnetb2_model(num_classes=10,is_TrivialAugmentWide=False) # 2.2 Load saved weights (from our trained PyTorch model) EfficientNetB2_model.load_state_dict( torch.load( f="EfficientNet_B2_FT.pth", map_location=torch.device("cpu"), # load to CPU because we will use the free HuggingFace Space CPUs. ) ) ############################################## # 3. Create prediction function ############################################## def prediction(img) -> Tuple[Dict, float]: """returns prediction probabilities and prediction time. """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = EfficientNetB2_transforms(img).unsqueeze(0) # Put model into evaluation mode and turn on inference mode EfficientNetB2_model.eval() with torch.inference_mode(): # Get prediction probabilities pred_probs = torch.softmax(EfficientNetB2_model(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class. # This is the required format for Gradio's output parameter. pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ############################################## # 4. Gradio app ############################################## # 4.1 Create title, description and article strings title = "Artwork Classification 🎨" description = "An EfficientNetB2 computer vision model to classify artworks." article = "Created with PyTorch." # 4.2 Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] # 4.3 Create the Gradio demo demo = gr.Interface(fn=prediction, # mapping function from input to output inputs=gr.Image(type="pil"), outputs=[gr.Label(num_top_classes=3, label="Predictions"), # 1st output: pred_probs gr.Number(label="Prediction time (s)")], # 2nd output: pred_time # Create examples list from "examples/" directory examples=example_list, title=title, description=description, article=article) # 4.4 Launch the Gradio demo! demo.launch()